Synthesis
DOI: 10.1055/a-1702-4445
paper

Cobalt–Tertiary Amine Mediated Peroxy-trifluoromethylation and -halodifluoromethylation of Alkenes with CF2XBr (X = F, Cl, Br) and tert-Butyl Hydroperoxide

Liangzhi Pang
a  Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, P. R. of China
,
Qilin Sun
a  Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, P. R. of China
,
Zhan Huang
a  Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, P. R. of China
,
Suhua Li
b  School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. of China
c  Key Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. of China
,
Qiankun Li
a  Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, P. R. of China
› Author Affiliations
We would like to thank the National Natural Science Foundation of China (Grant No. 22001008 to Q.L. and No. 21971260 to S.L.), Anhui Provincial Natural Science Foundation (Grant No. 2008085QB61), Anhui Agricultural University (Nos. RC381902 and 2019zd13) to Q.L., Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (No. 2018B030306018), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2017ZT07C069), the Pearl River Talent Recruitment Program ofGuangdong Province (No. 2019QN01L111), and the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology (No. 2018kf04) to S.L.


Abstract

An efficient cobalt-tertiary amine mediated peroxy-trifluoromethylation and -halodifluoromethylation of alkenes with simple and inexpensive CF2XBr (X = F, Cl, Br) has been described. This method demonstrated broad substrate scope and good to high yields with the tolerance of mono-, di-, and trisubstituted alkenes with both electron-donating and electron-withdrawing groups. The protocol provides an efficient access to various β-peroxyl trifluoromethyl/halodifluoromethyl derivatives. Further transformation of these type of compounds into other useful molecules, such as a ketene aminal, an α-trifluoromethyl ketone, and a gem-difluoroalkene, demonstrated the utility of this methodology.

Supporting Information



Publication History

Received: 22 October 2021

Accepted after revision: 22 November 2021

Publication Date:
22 November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Simons JH, Lewis CJ. J. Am. Chem. Soc. 1938; 60: 492
    • 2b Yagupolskii LM, Fedyuk DV, Petko KI, Troitskaya VI, Rudyk VI, Rudyuk VV. J. Fluorine Chem. 2000; 106: 181
    • 2c Hasek WR, Smith WC, Engelhardt VA. J. Am. Chem. Soc. 1960; 82: 543
    • 3a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 3b Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 3c Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 3d Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 3e Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 3f Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 3g Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 4a Rozen, S.; Hagooly, A. Bromotrifluoromethane, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted October 15, 2005.
    • 4b Qi Q, Shen Q, Lu L. J. Fluorine Chem. 2012; 133: 115
    • 4c He L, Natte K, Rabeah J, Taeschler C, Neumann H, Brückner A, Beller M. Angew. Chem. Int. Ed. 2015; 54: 4320
    • 4d Natte K, Jagadeesh RV, He L, Rabeah J, Chen J, Taeschler C, Ellinger S, Zaragoza F, Neumann H, Brückner A, Beller M. Angew. Chem. Int. Ed. 2016; 55: 2782
    • 4e Ren Y.-Y, Zheng X, Zhang X. Synlett 2018; 29: 1028
    • 4f Zhang K.-F, Bian K.-J, Li C, Sheng J, Li Y, Wang X.-S. Angew. Chem. Int. Ed. 2019; 58: 5069
    • 4g Li Q, Fan W, Peng D, Meng B, Wang S, Huang R, Liu S, Li S. ACS Catal. 2020; 10: 4012
    • 4h Peng D, Fan W, Zhao X, Chen W, Wen Y, Zhang L, Li S. Org. Chem. Front. 2021; 8: 6356
    • 5a Beckers H, Bürger H, Bursch P, Ruppert I. J. Organomet. Chem. 1986; 316: 41
    • 5b Tordeux M, Langlois B, Wakselman C. J. Org. Chem. 1989; 54: 2452
    • 6a Xu B, Mashuta MS, Hammond GB. Angew. Chem. Int. Ed. 2006; 45: 7265
    • 6b Lin J.-H, Xiao J.-C. Eur. J. Org. Chem. 2011; 4536
    • 6c Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
    • 6d Min Q.-Q, Yin Z, Feng Z, Guo W.-H, Zhang X. J. Am. Chem. Soc. 2014; 136: 1230
    • 6e Yue X, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 73
    • 6f Surmont R, Verniest G, De Kimpe N. Org. Lett. 2009; 11: 2920
    • 7a Farina A, Meille SV, Messina MT, Metrangolo P, Resnati G, Vecchio G. Angew. Chem. Int. Ed. 1999; 38: 2433
    • 7b Zhu S, Xing C, Xu W, Jin G, Li Z. Cryst. Growth Des. 2004; 4: 53
    • 8a Tarrant P, Lovelace AM. J. Am. Chem. Soc. 1955; 77: 768
    • 8b Molines H, Wakselman C. J. Fluorine Chem. 1987; 37: 183
    • 8c Yoshida M, Morinaga Y, Iyoda M. J. Fluorine Chem. 1994; 68: 33
    • 8d Salomon P, Zard SZ. Org. Lett. 2014; 16: 2926
    • 8e Daniel M, Dagousset G, Diter P, Klein P.-A, Tuccio B, Goncalves A.-M, Masson G, Magnier E. Angew. Chem. Int. Ed. 2017; 56: 3997
    • 8f McAtee RC, Beatty JW, McAtee CC, Stephenson CR. J. Org. Lett. 2018; 20: 3491
    • 8g Kawamura S, Henderson CJ, Aoki Y, Sekine D, Kobayashi S, Sodeoka M. Chem. Commun. 2018; 54: 11276
    • 8h Zhang J, Xu X.-H, Qing F.-L. Tetrahedron Lett. 2016; 57: 2462
    • 8i Yu J, Wang D, Xu Y, Wu Z, Zhu C. Adv. Synth. Catal. 2018; 360: 744
    • 8j Lin Q.-Y, Xu X.-H, Qing F.-L. Org. Biomol. Chem. 2015; 13: 8740
    • 8k Dmitriev IA, Supranovich VI, Levin VV, Dilman AD. Eur. J. Org. Chem. 2019; 4119
    • 8l Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 8m Zhao Y, Gao B, Hu J. J. Am. Chem. Soc. 2012; 134: 5790
    • 10a Kornblum N, DeLaMare HE. J. Am. Chem. Soc. 1951; 73: 880
    • 10b Staben ST, Linghu X, Toste FD. J. Am. Chem. Soc. 2006; 128: 12658
    • 10c Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
    • 10d Lv L, Shen B, Li Z. Angew. Chem. Int. Ed. 2014; 53: 4164
    • 10e Chen Y, Li L, Ma Y, Li Z. J. Org. Chem. 2019; 84: 5328
    • 10f Chen Y, Ma Y, Li L, Cui M, Li Z. Org. Chem. Front. 2020; 7: 1837
    • 10g Wang L, Ma Y, Jiang Y, Lv L, Li Z. Chem. Commun. 2021; 57: 7846
    • 10h Chen Y, Li L, He X, Li Z. ACS Catal. 2019; 9: 9098
    • 10i Ma Y, Chen Y, Lv L, Li Z. Adv. Synth. Catal. 2021; 363: 3233
    • 10j Ma Y, Chen Y, Lou C, Li Z. Asian J. Org. Chem. 2020; 9: 1018
    • 11a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 11b Minatti A, Muñiz K. Chem. Soc. Rev. 2007; 36: 1142
    • 11c Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 11d McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 11e Wolfe JP. Angew. Chem. Int. Ed. 2012; 51: 10224
    • 11f Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 11g Cao MY, Ren X, Lu Z. Tetrahedron Lett. 2015; 56: 3732
    • 12a Zhang H.-Y, Ge C, Zhao J, Zhang Y. Org. Lett. 2017; 19: 5260
    • 12b Qi B, Zhang T, Li M, He C, Duan C. Catal. Sci. Technol. 2017; 7: 5872
    • 13a Shi Y, Sitkoff D, Zhang J, Klei HE, Kish K, Liu EC.-K, Hartl KS, Seiler SM, Chang M, Huang C, Youssef S, Steinbacher TE, Schumacher WA, Grazier N, Pudzianowski A, Apedo A, Discenza L, Yanchunas JJr, Stein PD, Atwal KS. J. Med. Chem. 2008; 51: 7541
    • 13b Chen N, Meng X, Zhu F, Cheng J, Shao X, Li Z. J. Agric. Food Chem. 2015; 63: 1360
  • 14 Wang L, Qi C, Guo T, Jiang H. Org. Lett. 2019; 21: 2223
    • 15a Spier E, Neuenschwander U, Hermans I. Angew. Chem. Int. Ed. 2013; 52: 1581
    • 15b Turrà N, Neuenschwander U, Baiker A, Peeters J, Hermans I. Chem. Eur. J. 2010; 16: 13226
  • 16 Su X, Huang H, Yuan Y, Li Y. Angew. Chem. Int. Ed. 2017; 56: 1338