Synthesis 2022; 54(09): 2298-2308
DOI: 10.1055/a-1730-7983
paper

Convenient and General Synthesis of C-3-Substituted Het(aryl)indole C-Nucleoside Analogues from Sugar Alkynes

Xiang Zhou
a   Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
,
Zhaoxin Cao
a   Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
,
Qianxia Chen
a   Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
,
Fuyi Zhang
a   Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
,
Yufen Zhao
a   Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, P. R. of China
b   Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, P. R. of China
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (No. 21772180, 21272219) for financial support.


Abstract

The synthesis of C-3-substituted het(aryl)indole C-nucleoside analogues bearing structurally diverse sugar moieties has been achieved by Sonogashira coupling of terminal sugar alkynes with het(aryl) iodides followed by heteroannulation of the corresponding sugar/het(aryl) alkynes with substituted 2-iodoanilines. This method is simple and general and is suitable for structurally diverse sugars and various het(aryl) iodides. The terminal sugar alkynes include furanosides, pyranosides, and acyclic sugars with sensitive groups and bulky substituents. The het(aryl) iodides involve iodobenzene, iodothiophene, iodobenzothiophene, and iodobenzofuran. Thirty-one examples are presented and the corresponding 2-het(aryl)indole C-nucleoside analogues are obtained in moderate to excellent yields.

Supporting Information



Publication History

Received: 30 November 2021

Accepted after revision: 04 January 2022

Accepted Manuscript online:
04 January 2022

Article published online:
21 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Walker JA, Liu W, Wise DS, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1236
    • 1b Aketani S, Tanaka K, Yamamoto K, Ishihama A, Cao H, Tengeiji A, Hiraoka S, Shiro M, Shionoya M. J. Med. Chem. 2002; 45: 5594
    • 1c Lai JS, Kool ET. J. Am. Chem. Soc. 2004; 126: 3040
    • 1d Matsuda S, Fillo JD, Henry AA, Rai P, Wilkens SJ, Dwyer TJ, Geierstanger BH, Wemmer DE, Schultz PG, Spraggon G, Romesberg FE. J. Am. Chem. Soc. 2007; 129: 10466
    • 1e Leconte AM, Hwang GT, Matsuda S, Capek P, Hari Y, Romesberg FE. J. Am. Chem. Soc. 2008; 130: 2336
    • 1f Adamo MF. A, Pergoli R. Curr. Org. Chem. 2008; 12: 1544
    • 1g Leconte AM, Joubert N, Hocek M, Romesberg FE. ChemBioChem 2008; 9: 2796
    • 1h Štefko M, Pohl R, Hocek M. Tetrahedron 2009; 65: 4471

      Selected examples:
    • 2a El-Gazzar AB. A, Hafez HN, Abbas HS. Eur. J. Med. Chem. 2009; 44: 4249
    • 2b El-Gazzar AB. A, Hafez HN, Nawwar GA. M. S. Eur. J. Med. Chem. 2009; 44: 1427
    • 2c Štambaský J, Hocek M, Kočovský P. Chem. Rev. 2009; 109: 6729
    • 2d Popsavin M, Spaić S, Svirčev M, Kojić V, Bogdanović G, Pejanović V, Popsavin V. Tetrahedron 2009; 65: 7637
    • 2e Cai X, Ng K, Panesar H, Moon SJ, Paredes M, Ishida K, Hertweck C, Minehan TG. Org. Lett. 2014; 16: 2962
    • 2f Fujita Y, Inagaki NJ. Diabetes Invest. 2014; 5: 265
    • 2g Zhang Y, Liu ZP. Curr. Med. Chem. 2016; 23: 832
    • 2h Goodwin NC, Ding ZM, Strobel BA. H, Harris AL, Smith M, Thompson AY, Xiong W, Mseeh F, Bruce DJ, Diaz D, Gopinathan S, Li L, O’Neill EO, Thiel M, Wilson AG. E, Carson KG, Powell DR, Rawlins DB. J. Med. Chem. 2017; 60: 710
    • 3a Yokoyama M, Toyoshima H, Shimizu M, Togo H. J. Chem. Soc., Perkin Trans. 1 1997; 29
    • 3b Girgis NS, Cottam HB, Robins RL. J. Heterocycl. Chem. 1988; 25: 361
    • 3c Matsuda S, Henry AA, Schultz PG, Romesberg FE. J. Am. Chem. Soc. 2003; 125: 6134
    • 3d Zhang X, Lee I, Berdis AJ. Org. Biomol. Chem. 2004; 2: 1703
    • 4a Rajski SR, Kumar S, Roberts RJ, Barton JK. J. Am. Chem. Soc. 1999; 121: 5615
    • 4b Wagenknecht HA, Stemp ED. A, Barton JK. J. Am. Chem. Soc. 2000; 122: 1
    • 4c Wagenknecht HA, Stemp ED. A, Barton JK. Biochemistry 2000; 39: 5483
    • 4d Wagenknecht HA, Rajski SR, Pascaly M, Stemp ED. A, Barton JK. J. Am. Chem. Soc. 2001; 123: 4400
    • 4e Mayer-Enthart E, Kaden P, Wagenknecht HA. Biochemistry 2005; 44: 11749
    • 4f Valis L, Mayer-Enthart E, Wagenknecht HA. Bioorg. Med. Chem. Lett. 2006; 16: 3184
    • 5a Hofsteenge J, Müller DR, Beer T, Löffler A, Richter WJ, Vliegenthart J. Biochemistry 1994; 33: 13524
    • 5b Beer T, Vliegenthart J, Löffler A, Hofsteenge J. Biochemistry 1995; 34: 11785
  • 6 Wu YX, Zhang ZX, Hu H, Li DM, Qiu GF, Hu XM, He XJ. Fitoterapia 2011; 82: 288

    • Selected examples:
    • 7a Rudisillt DE, Stille JK. J. Org. Chem. 1989; 54: 5856
    • 7b Cacchi FS, Fabrizi G, Parisi LM. Org. Lett. 2003; 5: 3843
    • 7c Esseveldt BC. J, Delft FL, Gelder R, Rutjes FP. J. T. Org. Lett. 2003; 5: 1717
    • 7d Okuma K, Seto J.-i, Sakaguchi K.-i, Ozaki S, Nagahora N, Shioji K. Tetrahedron Lett. 2009; 50: 2943
    • 7e Tyrrell E, Whiteman L, Williams N. Synthesis 2009; 829
    • 7f Lu BZ, Zhao W, Wei H.-X, Dufour M, Farina V, Senanayake CH. Org. Lett. 2006; 8: 3271
    • 7g Hiroya K, Itoh S, Sakamoto T. J. Org. Chem. 2004; 69: 1126
    • 7h Sakai N, Annaka K, Konakahara T. Org. Lett. 2004; 6: 1527
    • 7i Sanz R, Guilarte V, Garcia N. Org. Biomol. Chem. 2010; 8: 3860
    • 7j Sakai N, Annaka K, Fujita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4160
    • 8a Arcadi A, Cacchi S, Marinelli F. Tetrahedron Lett. 1989; 30: 2581
    • 8b Ezquerra J, Pedregal C, Lamas C, Barluenga J, Pérez M, García-Martín MA, González JM. J. Org. Chem. 1996; 61: 5804
    • 8c Kondo Y, Kojima S, Sakamoto T. J. Org. Chem. 1997; 62: 6507
    • 9a Takeda A, Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2000; 122: 5662
    • 9b Kamijo S, Yamamoto Y. J. Org. Chem. 2003; 68: 4764
    • 9c Kirsch G, Hesse S, Comel A. Curr. Org. Synth. 2004; 1: 47
  • 10 Yin Y, Ma W, Chai Z, Zhao G. J. Org. Chem. 2007; 72: 5731
    • 11a Dohle W, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2488
    • 11b Yasuhara A, Suzuki N, Yoshino T, Takeda Y, Sakamoto T. Tetrahedron Lett. 2002; 43: 6579
    • 11c Koradin C, Dohle W, Rodriguez AL, Schmid B, Knochel P. Tetrahedron 2003; 59: 1571
    • 12a Barluenga J, Trincado M, Rubio E, Gonzáles JM. Angew. Chem. Int. Ed. 2003; 42: 2406
    • 12b Huang Q, Larock CR. J. Org. Chem. 2003; 68: 7342
    • 12c Yue D, Larock CR. Org. Lett. 2004; 6: 1037
    • 12d Amjad M, Knight DW. Tetrahedron Lett. 2004; 45: 539
  • 13 Yepremyan A, Minehan TG. Org. Biomol. Chem. 2012; 10: 5194
  • 15 Nečas D, Hidasová D, Hocek M, Kotora M. Org. Biomol. Chem. 2011; 9: 5934
    • 16a Cornia M, Casiraghi G, Zetta L. J. Org. Chem. 1991; 56: 5466
    • 16b He W, Togo H, Yokoyama M. Tetrahedron Lett. 1997; 38: 5541
    • 16c He W, Togo H, Waki Y, Yokoyama M. J. Chem. Soc., Perkin Trans. 1 1998; 2425
    • 16d Guianvarc’h D, Benhida R, Fourrey J.-L. Tetrahedron Lett. 2001; 42: 647
    • 16e Guianvarc’h D, Fourrey J.-L, Tran Huu Dau M.-E, Guérineau V, Benhida R. J. Org. Chem. 2002; 67: 3724
    • 17a Barbaric J, Wanninger-Wei C, Wagenknecht H.-A. Eur. J. Org. Chem. 2009; 364
    • 17b Wiebe C, Sotilla SF, Opatz T. Synthesis 2012; 44: 1385
  • 18 Lee YJ, Baek JY, Lee B.-Y, Kang SS, Park H.-S, Jeon HB, Kim KS. Carbohydr. Res. 2006; 341: 1708
    • 19a Ma DL, Shum TY. T, Zhang F, Che C.-M, Yang M. Chem. Commun. 2005; 4675
    • 19b Zhang Q, Sun J, Zhu Y, Zhang F, Yu B. Angew. Chem. Int. Ed. 2011; 50: 4933
    • 19c Yu J, Sun J, Niu Y, Li R, Liao J, Zhang F. Chem. Sci. 2013; 4: 3899
    • 20a Liu H.-M, Zhang F, Zhang J, Li S. Carbohydr. Res. 2003; 338: 1737
    • 20b Liu H.-M, Zhang F, Wang S. Org. Biomol. Chem. 2003; 1: 1641
    • 20c Liu H.-M, Zhang F, Zou D.-P. Chem. Commun. 2003; 2044
    • 20d Zhang F, Liu H, Li Y.-F, Liu H.-M. Carbohydr. Res. 2010; 345: 839
    • 20e Zhang Q, Sun J, Zhang F, Yu B. Eur. J. Org. Chem. 2010; 3579
    • 20f Liu H, Zhang F, Li J.-P, Yan X, Liu H.-M, Zhao Y. J. Chem. Crystallogr. 2011; 41: 1228
    • 20g Zhang F, Liu H, Sheng Y, Liu H.-M. Chin. J. Chem. 2012; 30: 195
    • 20h Zhang F, Mu D, Wang L, Han F, Zhao Y. J. Org. Chem. 2014; 79: 9490
    • 20i Zhang F, Wang L, Zhang C, Zhao Y. Chem. Commun. 2014; 50: 2046
    • 20j Zhang F, Xi Y, Lu Y, Wang L, Liu H, Li J. Chem. Commun. 2014; 50: 5771
    • 20k Zhou X, Jia T, Luo Y, Liu H, Zhang F, Zhao Y. Org. Biomol. Chem. 2020; 18: 1800
    • 21a Cory EJ, Fuchs PL. Tetrahedron Lett. 1972; 3769
    • 21b Huang SL, Omura K, Swern D. J. Org. Chem. 1976; 41: 3329
    • 21c Lee HH, Hodgson P, Bernacki JR, Korytnyk W, Sharm M. Carbohydr. Res. 1988; 179: 59
    • 21d Jarosz S. Tetrahedron Lett. 1988; 29: 1193
    • 21e Krishna PK, Ayyagari VS. Org. Lett. 2007; 9: 1121
    • 21f Ramana CV, Giri AG, Suryawanshi SB, Gonnade RG. Tetrahedron Lett. 2007; 48: 265
    • 21g Ayyagari VS, Kalanidhi P, Krishna PK. Chem. Eur. J. 2010; 16: 8545
  • 22 Walton DJ, Mcpherson JD. Carbohydr. Res. 1987; 167: 123
  • 23 Anderson KW, Buchwald SL. Angew. Chem. Int. Ed. 2005; 44: 6173
  • 24 Tronchet JM. J, Gonzalez A, Zumwald J.-B, Perret F. Helv. Chim. Acta 1974; 57: 1505
  • 26 Dolhem F, Lievre C, Demailly G. Tetrahedron 2003; 59: 155
  • 27 Norsikian S, Soule J.-F, Cannillo A, Guillot R, Dau M.-ET. H, Beau J.-M. Org. Lett. 2012; 14: 544
    • 28a Hao W, Wei J, Zhang W.-X, Xi Z. Angew. Chem. Int. Ed. 2014; 53: 14533
    • 28b Hao W, Wang H, Walsh PJ, Xi Z. Org. Chem. Front. 2015; 2: 1080
    • 28c Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 28d Hao W, Wei J, Chi Y, Walsh PJ, Xi Z. Chem. Eur. J. 2016; 22: 3422
    • 29a Amatore C, Jutand A. Acc. Chem. Res. 2000; 33: 314
    • 29b Hills ID, Fu GC. J. Am. Chem. Soc. 2004; 126: 13178
    • 29c Geng W, Zhang W.-X, Hao W, Xi Z. J. Am. Chem. Soc. 2012; 134: 20230
    • 29d Hao W, Geng W, Zhang W.-X, Xi Z. Chem. Eur. J. 2014; 20: 2605