Synthesis 2022; 54(11): 2647-2660
DOI: 10.1055/a-1736-7337
paper

Total Synthesis of Lamellarins U and A3 by Interrupting Halogen Dance

Yuya Okui
a   Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
,
Yuto Yasuda
a   Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
,
Atsunori Mori
a   Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
b   Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
,
Kentaro Okano
a   Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
› Author Affiliations
This work was financially supported by the Japan Society for the Promotion of Science [JSPS, KAKENHI grants no. JP19H02717 in Scientific Research (B)].


Abstract

A total synthesis of lamellarins U and A3 is described. The synthesis features the interruption of a halogen dance reaction of a metalated α,β-dibromopyrrole. The pyrrolylmagnesium reagent, generated by deprotonative metalation by using (TMP)MgCl·LiCl (TMP = 2,2,6,6-tetramethylpiperidide) as the base, was transmetalated to the corresponding organozinc species without causing the halogen dance reaction, which underwent a Negishi coupling to incorporate an aryl group onto the pyrrole ring. The arylated α,β-dibromopyrrole was then converted into lamellarins U and A3 through an α-selective halogen–magnesium exchange followed by carboxylation and subsequent palladium-mediated cyclization. The late-stage introduction of another aryl group was performed using a Kosugi–Migita–Stille coupling to provide lamellarins U and A3.

Supporting Information



Publication History

Received: 11 December 2021

Accepted after revision: 11 January 2022

Accepted Manuscript online:
11 January 2022

Article published online:
23 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Andersen RJ, Faulkner DJ, He CH, Van Duyne GD, Clardy J. J. Am. Chem. Soc. 1985; 107: 5492
    • 2a Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 2b Fukuda T, Ishibashi F, Iwao M. Heterocycles 2011; 83: 491
    • 2c Imbri D, Tauber J, Opatz T. Mar. Drugs 2014; 12: 6142
    • 2d Fukuda T, Ishibashi F, Iwao M. In The Alkaloids: Chemistry and Biology, . Knölker H.-J. Academic Press; Cambridge (USA): 2020. 1, and references cited therein
    • 3a Sheng CQ, Miao ZY, Zhang WN. Stud. Nat. Prod. Chem. 2016; 47: 1
    • 3b Youssef DT. A, Almagthali H, Shaala LA, Schmidt EW. Mar. Drugs 2020; 18: 307
    • 3c Nishiya N, Oku Y, Ishikawa C, Fukuda T, Dan S, Mashima T, Ushijima M, Furukawa Y, Sasaki Y, Otsu K, Sakyo T, Abe M, Yonezawa H, Ishibashi F, Matsuura M, Tomida A, Seimiya H, Yamori T, Iwao M, Uehara Y. Cancer Sci. 2021; 112: 1963 , and references cited therein
  • 4 Fürstner A, Weintritt H, Hupperts A. J. Org. Chem. 1995; 60: 6637
    • 5a Heim A, Terpin A, Steglich W. Angew. Chem. Int. Ed. 1997; 36: 155
    • 5b Peschko C, Winklhofer C, Steglich W. Chem. Eur. J. 2000; 6: 1147
    • 5c Peschko C, Winklhofer C, Terpin A, Steglich W. Synthesis 2006; 3048
    • 6a Banwell MG, Flynn BL, Hamel E, Hockless DC. R. Chem. Commun. 1997; 207
    • 6b Banwell M, Flynn B, Hockless D. Chem. Commun. 1997; 2259
    • 6c Hasse K, Willis AC, Banwell MG. Eur. J. Org. Chem. 2011; 88
    • 6d Flynn BL, Banwell MG. Heterocycles 2012; 84: 1141
    • 7a Ishibashi F, Miyazaki Y, Iwao M. Tetrahedron 1997; 53: 5951
    • 7b Fujikawa N, Ohta T, Yamaguchi T, Fukuda T, Ishibashi F, Iwao M. Tetrahedron 2006; 62: 594
    • 7c Yamaguchi T, Fukuda T, Ishibashi F, Iwao M. Tetrahedron Lett. 2006; 47: 3755
    • 7d Komatsubara M, Umeki T, Fukuda T, Iwao M. J. Org. Chem. 2014; 79: 529
    • 7e Fukuda T, Anzai M, Iwao M. Heterocycles 2016; 93: 593
  • 8 Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1999; 121: 54
    • 9a Gupton JT, Krumpe KE, Burnham BS, Webb TM, Shuford JS, Sikorski JA. Tetrahedron 1999; 55: 14515
    • 9b Gupton JT, Giglio BC, Eaton JE, Rieck EA, Smith KL, Keough MJ, Barelli PJ, Firich LT, Hempel JE, Smith TM, Kanters RP. F. Tetrahedron 2009; 65: 4283
    • 9c Gupton JT, Telang N, Patteson J, Lescalleet K, Yeudall S, Sobieski J, Harrison A, Curry W. Tetrahedron 2014; 70: 9759
    • 10a Ruchirawat S, Mutarapat T. Tetrahedron Lett. 2001; 42: 1205
    • 10b Ploypradith P, Mahidol C, Sahakitpichan P, Wongbundit S, Ruchirawat S. Angew. Chem. Int. Ed. 2004; 43: 866
    • 10c Ploypradith P, Petchmanee T, Sahakitpichan P, Litvinas ND, Ruchirawat S. J. Org. Chem. 2006; 71: 9440
    • 11a Cironi P, Manzanares I, Albericio F, Álvarez M. Org. Lett. 2003; 5: 2959
    • 11b Marfil M, Albericio F, Álvarez M. Tetrahedron 2004; 60: 8659
    • 11c Pla D, Marchal A, Olsen CA, Albericio F, Álvarez M. J. Org. Chem. 2005; 70: 8231
    • 13a Liermann JC, Opatz T. J. Org. Chem. 2008; 73: 4526
    • 13b Dialer C, Imbri D, Hansen SP, Opatz T. J. Org. Chem. 2015; 80: 11605
    • 13c Klintworth R, de Koning CB, Opatz T, Michael JP. J. Org. Chem. 2019; 84: 11025 , and references cited therein
  • 14 Li Q, Jiang J, Fan A, Cui Y, Jia Y. Org. Lett. 2011; 13: 312
  • 15 Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2014; 136: 13226
    • 16a Manjappa KB, Syu J.-R, Yang D.-Y. Org. Lett. 2016; 18: 332
    • 16b Manjappa KB, Lin J.-M, Yang D.-Y. J. Org. Chem. 2017; 82: 7648
  • 17 Zheng K.-L, You M.-Q, Shu W.-M, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 2262
  • 18 Lade DM, Pawar AB, Mainkar PS, Chandrasekhar S. J. Org. Chem. 2017; 82: 4998
    • 19a Kumar V, Awasthi A, Salam A, Khan T. J. Org. Chem. 2019; 84: 11596
    • 19b Kumar V, Salam A, Kumar D, Khan T. ChemistrySelect 2020; 5: 14510
    • 20a Klintworth R, de Koning CB, Michael JP. J. Org. Chem. 2020; 85: 1054
    • 20b Klintworth R, de Koning CB, Michael JP. Eur. J. Org. Chem. 2020; 3860
    • 21a Morikawa D, Morii K, Yasuda Y, Mori A, Okano K. J. Org. Chem. 2020; 85: 8603
    • 21b Morii K, Yasuda Y, Morikawa D, Mori A, Okano K. J. Org. Chem. 2021; 86: 13388

      For the isolation of lamellarin U, see:
    • 22a Reddy MV. R, Faulkner DJ, Venkateswarlu Y, Rao MR. Tetrahedron 1997; 53: 3457
    • 22b Krishnaiah P, Reddy VL. N, Venkataramana G, Ravinder K, Srinivasulu M, Raju TV, Ravikumar K, Chandrasekar D, Ramakrishna S, Venkateswarlu Y. J. Nat. Prod. 2004; 67: 1168
  • 23 For the isolation of lamellarin A3, see: Plisson F, Huang X.-C, Zhang H, Khalil Z, Capon RJ. Chem. Asian J. 2012; 7: 1616
  • 24 The total synthesis of lamellarin A3 has been reported by Banwell6d prior to the isolation report.23 In the report by Banwell, this compound was named as 7-deoxylamellarin K.

    • For representative reviews on the halogen dance, see:
    • 25a Schlosser M. Eur. J. Org. Chem. 2001; 3975
    • 25b Schnürch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
    • 25c Erb W, Mongin F. Tetrahedron 2016; 72: 4973
    • 25d Inoue K, Okano K. Asian J. Org. Chem. 2020; 9: 1548 , and references cited therein

      For representative total syntheses using the halogen dance, see:
    • 26a Comins DL, Saha JK. J. Org. Chem. 1996; 61: 9623
    • 26b Arzel E, Rocca P, Grellier P, Labaeïd M, Frappier F, Guéritte F, Gaspard C, Marsais F, Godard A, Quéguiner G. J. Med. Chem. 2001; 44: 949
    • 26c Bouillon A, Voisin AS, Robic A, Lancelot J.-C, Collot V, Rault S. J. Org. Chem. 2003; 68: 10178
    • 26d Stangeland EL, Sammakia T. J. Org. Chem. 2004; 69: 2381
    • 26e Keaton KA, Phillips AJ. J. Am. Chem. Soc. 2006; 128: 408
    • 26f Ohtawa M, Ogihara S, Sugiyama K, Shiomi K, Harigaya Y, Nagamitsu T, Omura S. J. Antibiot. 2009; 62: 289
    • 26g Schäckermann J.-N, Lindel T. Org. Lett. 2017; 19: 2306
    • 26h de Souza MV. N. Curr. Org. Chem. 2007; 11: 637 , and references cited therein
    • 27a Okano K, Sunahara K, Yamane Y, Hayashi Y, Mori A. Chem. Eur. J. 2016; 22: 16450
    • 27b Miyagawa N, Murase Y, Okano K, Mori A. Synlett 2017; 28: 1106
    • 27c Hayashi Y, Okano K, Mori A. Org. Lett. 2018; 20: 958
    • 27d Yamane Y, Sunahara K, Okano K, Mori A. Org. Lett. 2018; 20: 1688
    • 27e Mari D, Miyagawa N, Okano K, Mori A. J. Org. Chem. 2018; 83: 14126
    • 27f Okano K, Murase Y, Mori A. Heterocycles 2019; 99: 1444
    • 27g Okano K, Yamane Y, Nagaki A, Mori A. Synlett 2020; 31: 1913
    • 27h Okano K. J. Synth. Org. Chem., Jpn. 2020; 78: 930
    • 27i Inoue K, Feng Y, Mori A, Okano K. Chem. Eur. J. 2021; 27: 10267
    • 28a Negishi E.-I, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
    • 28b Negishi E.-I. Acc. Chem. Res. 1982; 15: 340
    • 28c Negishi E.-I. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 29 Mitsunobu O. Synthesis 1981; 1
  • 30 CCDC 2104782, 2104783, and 2104786 contain the supplementary crystallographic data for compounds 10, 16, and 17, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 31 Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
  • 32 Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
  • 34 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 35 An NOE enhancement was observed between the aromatic proton on the pyrrole ring and the methylene protons attached to the carbon adjacent to the pyrrole nitrogen.
  • 36 Christophersen C, Begtrup M, Ebdrup S, Petersen H, Vedsø P. J. Org. Chem. 2003; 68: 9513
  • 37 Fröhlich H, Kalt W. J. Org. Chem. 1990; 55: 2993
  • 38 Jones L, Whitaker BJ. J. Comput. Chem. 2016; 37: 1697
  • 39 CCDC 2104784 contains the supplementary crystallographic data for compound 13. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 40a Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
    • 40b Becker MR, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
  • 41 Iwao M, Takeuchi T, Fujikawa N, Fukuda T, Ishibashi F. Tetrahedron Lett. 2003; 44: 4443
  • 42 CCDC 2104785 contains the supplementary crystallographic data for compound 14. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 43a Kosugi M, Shimizu Y, Migita T. Chem. Lett. 1977; 6: 1423
    • 43b Milstein D, Stille JK. J. Am. Chem. Soc. 1979; 101: 4992

      Suzuki–Miyaura coupling provided a substantial amount of the debrominated side product, see:
    • 44a Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
    • 44b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 45 Singh R, Singh GC, Ghosh SK. Eur. J. Org. Chem. 2007; 5376
  • 46 Pouységu L, Avellan A.-V, Quideau S. J. Org. Chem. 2002; 67: 3425