Synthesis 2022; 54(11): 2669-2676
DOI: 10.1055/a-1739-5042
paper

Synthesis of Seleno Oxindoles via Iodine-Induced Radical Cyclization of N-Arylacrylamides with Diorganyl Diselenides

Hongmei Jiang
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Haicheng Shen
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Cehua Li
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Zheng Jin
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Yanxue Shang
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Yufeng Chen
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Min Yi
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
,
Juan Du
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
b   International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
,
Qing-Wen Gui
a   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, P. R. of China
c   Hunan Optical Agriculture Engineering Technology Research Center, Changsha 410128, P. R. of China
› Author Affiliations
This work was financially supported by the Hunan Province Science Foundation for Youths (2020JJ4035) and Double First-Class Construction Project of Hunan Agricultural University (SYL2019064, SYL2019063), the Basic Research Foundation of China Tobacco Yunnan Industrial Corporation (11700167), Outstanding postdoctoral Innovative Talents Program of Science and Technology Innovation Talents Program of Hunan Province (2021RC2079) and Foundation of Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Resource Utilization (18KFXM07).


Abstract

A mild, radical cascade cyclization of N-arylacrylamides with diselenides for the preparation of oxindoles via iodine oxidation is disclosed that provides an environmentally friendly process for the construction of C–Se bonds. Twenty-five examples of N-arylacrylamide substrates were investigated, and excellent yields were achieved. The tandem cyclization of acrylamide with diphenyl disulfide was also applicable under the same conditions.

Supporting Information



Publication History

Received: 03 November 2021

Accepted: 13 January 2022

Accepted Manuscript online:
13 January 2022

Article published online:
17 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Santi C, Santoro S, Battistelli B. Curr. Org. Chem. 2010; 14: 2442
    • 1b Rafique J, Canto RF. S, Saba S, Barbosa FA. R, Braga AL. Curr. Org. Chem. 2016; 20: 166
    • 2a Galant LS, Rafique J, Braga AL, Braga FC, Saba S, Radi R, da Rocha JB. T, Santi C, Monsalve M, Farina M, de Bem AF. Neurochem. Res. 2021; 46: 120
    • 2b Guo W, Fu Y. Chem. Eur. J. 2020; 26: 13322
    • 2c Hoover GC, Seferos DS. Chem. Sci. 2019; 10: 9182
    • 2d Miao Q, Xu J, Lin A, Wu X, Wu L, Xie W. Curr. Med. Chem. 2018; 25: 2009
    • 2e Banerjee B, Koketsu M. Coord. Chem. Rev. 2017; 339: 104
    • 2f Gularte MS, Anghinoni JM, Abenante L, Voss GT, de Oliveira RL, Vaucher RA, Luchese C, Wilhelm EA, Lenardao EJ, Fajardo AR. Carbohydr. Polym. 2019; 219: 240
    • 2g Al-Tamimi A.-MS, Etxebeste-Mitxeltorena M, Sanmartin C, Jimenez-Ruiz A, Syrjanen L, Parkkila S, Selleri S, Carta F, Angeli A, Supuran CT. Bioorg. Chem. 2019; 86: 339
    • 2h Miao Q, Xu JY, Lin AJ, Wu XM, Wu L, Xie WJ. Curr. Med. Chem. 2018; 25: 2009
    • 2i Nascimento V, Ferreira NL, Canto RF. S, Schott KL, Waczuk EP, Sancineto L, Santi C, Rocha JB. T, Braga AL. Eur. J. Med. Chem. 2014; 87: 131
    • 2j Pietka-Ottlik M, Wojtowicz-Mlociiowska H, Kolodziejczyk K, Piasecki E, Mlochowski J. Chem. Pharm. Bull. 2008; 56: 1423
    • 2k Plano D, Sanmartin C, Moreno E, Prior C, Calvo A, Palop JA. Bioorg. Med. Chem. Lett. 2007; 17: 6853
    • 3a Chen W, Zhu X, Wang F, Yang Y, Deng G, Liang Y. J. Org. Chem. 2020; 85: 3349
    • 3b Sedighian H, Mamaghani MB, Notash B, Bazgir A. J. Org. Chem. 2021; 86: 2244
    • 3c Wang D.-L, Jiang N.-Q, Cai Z.-J, Ji S.-J. J. Org. Chem. 2021; 86: 9898
    • 3d Li J, Liu X, Deng J, Huang Y, Pan Z, Yu Y, Cao H. Chem. Commun. 2020; 56: 735
    • 3e Sonawane AD, Koketsu M. Curr. Org. Chem. 2019; 23: 3206
    • 3f Satheesh V, Srivastava HK, Kumar SV, Sengoden M, Punniyamurthy T. Adv. Synth. Catal. 2019; 361: 55
    • 3g Ren Y, Xu B, Zhong Z, Pittman CU. Jr, Zhou A. Asian J. Org. Chem. 2018; 7: 2439
    • 3h Cui F.-H, Chen J, Su S.-X, Xu Y.-l, Wang H.-s, Pan Y.-m. Adv. Synth. Catal. 2017; 359: 3950
    • 3i Santi C, Santoro S. Wiley-VCH; Weinheim: 2011
    • 4a Liang Z.-P, Yi W, Wang P.-F, Liu G.-Q, Ling Y. J. Org. Chem. 2021; 86: 5292
    • 4b Handoko, Benslimane Z, Arora PS. Org. Lett. 2020; 22: 5811
    • 4c Haluszczuk A, Babul N, Nierzwicki L, Przychodzen W. Eur. J. Org. Chem. 2019; 4411
    • 4d Wu G, Min L, Li H, Gao W, Ding J, Huang X, Liu M, Wu H. Green Chem. 2018; 20: 1560
    • 4e Weber AC. H, Coelho FL, Affeldt RF, Schneider PH. Eur. J. Org. Chem. 2018; 6738
    • 4f Wang J, Sheng W, Yan J. Synlett 2018; 29: 1654
    • 4g Wang H, Chen S, Liu G, Guan H, Zhong D, Cai J, Zheng Z, Mao J, Walsh PJ. Organometallics 2018; 37: 4086
    • 4h Marini F, Sternativo S. Synlett 2013; 24: 11
    • 4i Bosman C, Dannibale A, Resta S, Trogolo C. Tetrahedron Lett. 1994; 35: 6525
  • 5 Wang XY, Zhong YF, Mo ZY, Wu SH, Xu YL, Tang HT, Pan YM. Adv. Synth. Catal. 2021; 363: 208
  • 6 Fu W.-j, Zhu M, Zou G.-l. Heterocycl. Commun. 2015; 21: 9
    • 7a Kaur M, Singh M, Chadha N, Silakari O. Eur. J. Med. Chem. 2016; 123: 858
    • 7b Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
    • 7c Satyamaheshwar P. Curr. Bioact. Compd. 2009; 5: 20
    • 7d Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 7e Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S. J. Med. Chem. 2006; 49: 3432
    • 8a Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
    • 8b Abdukader A, Zhang Y, Zhang Z, Liu C. Chin. J. Org. Chem. 2016; 36: 875
    • 8c Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
    • 8d Mai W, Wang J, Yang L, Yan J, Mao P, Xiao Y, Qu L. Chin. J. Org. Chem. 2014; 34: 1958
    • 8e Zhang M.-Z, Liu L, Gou Q, Wang Q, Li Y, Li W.-T, Luo F, Yuan M, Chen T, He W.-M. Green Chem. 2020; 22: 8369
    • 9a Niu K, Hao Y, Song L, Liu Y, Wang Q. Green Chem. 2021; 23: 302
    • 9b Zhang L, Wang Y, Yang Y, Zhang P, Wang C. Org. Chem. Front. 2020; 7: 3234
    • 9c Li X, Han MY, Wang B, Wang L, Wang M. Org. Biomol. Chem. 2019; 17: 6612
    • 9d Zhao Y, Li Z, Sharma UK, Sharma N, Song G, Van der Eycken EV. Chem. Commun. 2016; 52: 6395
    • 9e Biswas P, Paul S, Guin J. Angew. Chem. Int. Ed. 2016; 55: 7756
  • 10 Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. J. Org. Chem. 2013; 78: 12202
    • 11a Hou H, Li H, Xu Y, Song C, Wang C, Shi Y, Han Y, Yan C, Zhu S. Adv. Synth. Catal. 2018; 360: 4325
    • 11b Yang X, Zhao L, Yuan B, Qi Z, Yan R. Adv. Synth. Catal. 2017; 359: 3248
    • 11c Wang F.-X, Tian S.-K. J. Org. Chem. 2015; 80: 12697
  • 12 Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
  • 13 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 14a Zhang Z, Zhang L, Cao Y, Li F, Bai G, Liu G, Yang Y, Mo F. Org. Lett. 2019; 21: 762
    • 14b Jiang Y.-Y, Dou G.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2018; 5: 2573
  • 15 Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
  • 16 Shen T, Yuan Y, Jiao N. Chem. Commun. 2014; 50: 554
    • 17a Zhao J, Gao W, Chang H, Li X, Liu Q, Wei W. Chin. J. Org. Chem. 2014; 34: 1941
    • 17b Nidhi M, Preeti S. Res. J. Chem. Environ. 2010; 14: 77
    • 17c Zhang Z, Liu Q. Prog. Chem. 2006; 18: 270
    • 17d Banerjee AK, Vera W, Mora H, Laya MS, Bedoya L, Cabrera EV. J. Sci. Ind. Res. 2006; 65: 299
    • 18a Liu X, Cui H, Yang D, Dai S, Zhang G, Wei W, Wang H. Catal. Lett. 2016; 146: 1743
    • 18b Nagasawa Y, Matsusaki Y, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2015; 5: 63952
    • 18c Mphahlele MJ. Molecules 2009; 14: 5308
    • 18d Filipan-Litvic M, Litvic M, Vinkovic V. Tetrahedron 2008; 64: 5649
    • 18e Miller RA, Hoerrner RS. Org. Lett. 2003; 5: 285
    • 19a Gui Q.-W, He X, Wang W, Zhou H, Dong Y, Wang N, Tang J.-X, Cao Z, He W.-M. Green Chem. 2020; 22: 118
    • 19b Gui Q.-W, Teng F, Li Z.-C, Jin X.-F, Zhang M, Dai J.-N, Lin Y.-W, Cao Z, He W.-M. Org. Chem. Front. 2020; 7: 4026
    • 19c Gui Q.-W, Teng F, Ying S.-N, Liu Y, Guo T, Tang J.-X, Chen J.-Y, Cao Z, He W.-M. Chin. Chem. Lett. 2020; 31: 3241
    • 19d Jiang H, Tang X, Liu S, Wang L, Shen H, Yang J, Wang H, Gui Q.-W. Org. Biomol. Chem. 2019; 17: 10223
  • 20 By the use of 1.0 equivalents of iodine, the reaction became more efficient, as demonstrated by thin-layer chromatography (TLC), and the yield increased. We think that sufficient reactive intermediates can be produced only by the use of excess iodine.
    • 21a Hu L, Chen X, Yu L, Yu Y, Tan Z, Zhu G, Gui Q. Org. Chem. Front. 2018; 5: 216
    • 21b Gui Q, Han K, Liu Z, Su Z, He X, Jiang H, Tian B, Li Y. Org. Biomol. Chem. 2018; 16: 5748
    • 21c Gui Q, Hu L, Chen X, Liu J, Tan Z. Asian J. Org. Chem. 2015; 4: 870
    • 21d Teng F, Du J, Xun C, Zhu M.-X, Lu Z, Jiang H, Chen Y, Li Y, Gui Q.-W. Org. Biomol. Chem. 2021; 19: 8929