CC BY-NC-ND 4.0 · Planta Med 2022; 88(09/10): 838-857
DOI: 10.1055/a-1795-5876
Natural Product Chemistry and Analytical Studies
Original Papers

Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products[ # ]

Preston K. Manwill
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Laura Flores-Bocanegra
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Manead Khin
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Huzefa A. Raja
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
,
Daniel A. Todd
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
› Author Affiliations
Supported by: National Center for Complementary and Integrative Health U54 AT008909

Abstract

Many consumers are turning to kratom (Mitragyna speciosa) to self-manage pain and opioid addiction. In the United States, an array of capsules, powders, and loose-leaf kratom products are readily available. Additionally, several online sites supply live kratom plants. A prerequisite to establishing quality control and quality assurance standards for the kratom industry, or understanding how alkaloid levels effect clinical outcomes, is the identification and quantitation of major and minor alkaloid constituents within available products and preparations. To this end, an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynine, speciogynine, isopaynantheine, speciociliatine, and mitraciliatine) and 6 oxindole alkaloids (isomitraphylline, isospeciofoleine, speciofoline, corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products. These commercial products shared a qualitatively similar alkaloid profile, with 12 – 13 detected alkaloids and high levels of the indole alkaloid mitragynine (13.9 ± 1.1 – 270 ± 24 mg/g). The levels of the other major alkaloids (paynantheine, speciociliatine, speciogynine, mitraciliatine, and isopaynantheine) and the minor alkaloids varied in concentration from product to product. The alkaloid profile of US-grown M. speciosa “Rifat” showed high levels of the indole alkaloid speciogynine (7.94 ± 0.83 – 11.55 ± 0.18 mg/g) and quantifiable levels of isomitraphylline (0.943 ± 0.033 – 1.47 ± 0.18 mg/g). Notably, the alkaloid profile of a US-grown M. speciosa seedling was comparable to the commercial products with a high level of mitragynine (15.01 ± 0.20 mg/g). This work suggests that there are several M. speciosa chemotypes.

# Dedicated to Professor Dr. A. Douglas Kinghorn on the occasion of his 75th birthday.


Supporting Information



Publication History

Received: 08 October 2021

Accepted after revision: 23 February 2022

Article published online:
25 April 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M, Porter L, Helmick C. Prevalence of chronic pain and high-impact chronic pain among adults – United States, 2016. Morb Mortal Wkly Rep 2018; 67: 1001-1006
  • 2 Dasgupta N, Beletsky L, Ciccarone D. Opioid crisis: No easy fix to its social and economic determinants. Am J Public Health 2018; 108: 182-186
  • 3 Wilson N, Kariisa M, Seth P, Smith H, Davis NL. Drug and opioid-involved overdose deaths – United States, 2017–2018. Morb Mortal Wkly Rep 2020; 69: 290-297
  • 4 Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW. Herbal medicines for the management of opioid addiction. CNS Drugs 2011; 25: 999-1007
  • 5 Boyer EW, Babu KM, Macalino GE, Compton W. Self-treatment of opioid withdrawal with a dietary supplement, kratom. Am J Addict 2007; 16: 352-356
  • 6 Coe MA, Pillitteri JL, Sembower MA, Gerlach KK, Henningfield JE. Kratom as a substitute for opioids: Results from an online survey. Drug Alcohol Depend 2019; 202: 24-32
  • 7 Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Hörsten S, Ismail NIW, Jayabalan N, Hazim AI, Mansor SM, Müller CP. From kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 2013; 37: 138-151
  • 8 Brown PN, Lund JA, Murch SJ. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna Korth.: Implications for products sold as kratom. J Ethnopharmacol 2017; 202: 302-325
  • 9 Saingam D, Assanangkornchai S, Geater AF, Balthip Q. Pattern and consequences of krathom (Mitragyna speciosa Korth.) use among male villagers in southern Thailand: A qualitative study. Int J Drug Policy 2013; 24: 351-358
  • 10 Wray L. “Biak”: An opium substitute. J Fed Malay States Mus 1907; 2: 53-56
  • 11 Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A, Bersani FS, Vicknasingam B, Piazzon G, Li JH, Yu WJ, Kapitány-Fövény M, Farkas J, Di Giannantonio M, Corazza O. Following “the roots” of kratom (Mitragyna speciosa): The evolution of an enhancer from a traditional use to increase work and productivity in southeast asia to a recreational psychoactive drug in western countries. BioMed Res Int 2015; 968786: 1-11
  • 12 Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S, Filizola M, Javitch JA, Sames D. Synthetic and receptor signaling explorations of the Mitragyna alkaloids: Mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 2016; 138: 6754-6764
  • 13 Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa . Chem Pharm Bull 2004; 52: 916-928
  • 14 Flores-Bocanegra L, Raja HA, Graf TN, Augustinovic M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH. The chemistry of kratom [Mitragyna speciosa]: Updated characterization data and methods to elucidate indole and oxindole alkaloids. J Nat Prod 2020; 83: 2165-2177
  • 15 Wilson LL, Harris HM, Eans SO, Brice-Tutt AC, Cirino TJ, Stacy HM, Simons CA, León F, Sharma A, Boyer EW, Avery BA, McLaughlin JP, McCurdy CR. Lyophilized kratom tea as a therapeutic option for opioid dependence. Drug Alcohol Depend 2020; 216: 108310
  • 16 Kamble SH, Berthold EC, King TI, Raju Kanumuri SR, Popa R, Herting JR, Leon F, Sharma A, McMahon LR, Avery BA, McCurdy CR. Pharmacokinetics of eleven kratom alkaloids following an oral dose of either traditional or commercial kratom products in rats. J Nat Prod 2021; 84: 1104-1112
  • 17 Chear NJ, Leon F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, Singh D, Restrepo LF, Patel A, Hiranita T, Ramanathan S, Hampson AJ, McMahon LR, McCurdy CR. Exploring the chemistry of alkaloids from Malaysian Mitragyna speciosa (kratom) and the role of oxindoles on human opioid receptors. J Nat Prod 2021; 84: 1034-1043
  • 18 Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom alkaloids as probes for opioid receptor function: Pharmacological characterization of minor indole and oxindole alkaloids from kratom. ACS Chem Neurosci 2021; 12: 2661-2678
  • 19 Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, Chear NJY, Ramanathan S, Sharma A, León F, Hiranita T, Avery BA, McMahon LR, McCurdy CR. Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of selected indole-based kratom alkaloids. J Med Chem 2019; 63: 433-439
  • 20 Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS, McIntosh S, Raja HA, Graf TN, Hemby SE, Paine MF, Oberlies NH, Cech NB. Chemical composition and biological effects of kratom (Mitragyna speciosa): In vitro studies with implications for efficacy and drug interactions. Sci Rep 2020; 10: 19158
  • 21 Berthold EC, Kamble SH, Raju KS, King TI, Popa R, Sharma A, León F, Avery BA, McMahon LR, McCurdy CR. Preclinical pharmacokinetic study of speciociliatine, a kratom alkaloid, in rats using an UPLC-MS/MS method. J Pharm Biomed Anal 2021; 194: 113778
  • 22 Lo Faro AF, Di Trana A, La Maida N, Tagliabracci A, Giorgetti R, Busardò FP. Biomedical analysis of new psychoactive substances (NPS) of natural origin. J Pharm Biomed Anal 2020; 179: 112945
  • 23 Kerrigan S, Basiliere S. Kratom: A systematic review of toxicological issues. WIREs Forensic Sci 2022; 4: e1420
  • 24 Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol 2009; 27: 67-74
  • 25 Wang M, Carrell EJ, Ali Z, Avula B, Avonto C, Parcher JF, Khan IA. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in Mitragyna speciosa (kratom) plants. J Sep Sci 2014; 37: 1411-1418
  • 26 Sharma A, Kamble SH, León F, Chear NJY, King TI, Berthold EC, Ramanathan S, McCurdy CR, Avery BA. Simultaneous quantification of ten key Kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra‐performance liquid chromatography−tandem mass spectrometry. Drug Test Anal 2019; 11: 1162-1171
  • 27 Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019; 36: 1196-1221
  • 28 U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). Bioanalytical method validation: Guidance for industry. Rockville, MD: Food and Drug Administration; 2018: 1–41. Accessed March 22, 2022 at: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
  • 29 Mudge EM, Brown PN. Determination of mitragynine in Mitragyna speciosa raw materials and finished products by liquid chromatography with UV detection: Single-laboratory validation. J AOAC Int 2017; 100: 18-24
  • 30 León F, Habib E, Adkins JE, Furr EB, McCurdy CR, Cutler SJ. Phytochemical characterization of the leaves of Mitragyna speciosa grown in USA. Nat Prod Commun 2009; 4: 907-910
  • 31 Zhang M, Sharma A, León F, Avery B, Kjelgren R, McCurdy CR, Pearson BJ. Effects of nutrient fertility on growth and alkaloidal content in Mitragyna speciosa (kratom). Front Plant Sci 2020; 11: 597696
  • 32 Fowble KL, Musah RA. A validated method for the quantification of mitragynine in sixteen commercially available kratom (Mitragyna speciosa) products. Forensic Sci Int 2019; 299: 195-202
  • 33 Lesiak AD, Musah RA. Rapid high-throughput species identification of botanical material using direct analysis in real time high resolution mass spectrometry. J Visualized Exp 2016; 116: e54197
  • 34 Orio L, Alexandru L, Cravotto G, Mantegna S, Barge A. UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves. Ultrason Sonochem 2012; 19: 591-595
  • 35 Boffa L, Ghè C, Barge A, Muccioli G, Cravotto G. Alkaloid profiles and activity in different Mitragyna speciosa strains. Nat Prod Commun 2018; 13: 1111-1116
  • 36 Uy jr. SP, Seville SS, Jaranilla JLM, Desamito YKS, Barbacena RP, Narceda RJA. Determination of psychoactive mitragynine drug in suspected kratom species collected from various geographical areas in the Philippines: A pilot study on existing local plant-based new psychoactive substance (NPS). Arab J Forensic Sci 2019; 1: 1358-1366
  • 37 Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, Hampson AJ, Sharma A, Avery BA, McMahon LR, McCurdy CR. Metabolism of a kratom alkaloid metabolite in human plasma increases its opioid potency and efficacy. ACS Pharmacology & Translational Science 2020; 3: 1063-1068
  • 38 Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, Wilson LL, Scouller B, Alder AF, Kruegel AC, Ansonoff M, Varadi A, Eans SO, Hunkele A, Allaoa A, Kalra S, Xu J, Pan YX, Pintar J, Kivell BM, Pasternak GW, Cameron MD, McLaughlin JP, Sames D, Majumdar S. Oxidative metabolism as a modulator of kratomʼs biological actions. J Med Chem 2021; 64: 16553-16572
  • 39 Ellis CR, Racz R, Kruhlak NL, Kim MT, Zakharov AV, Southall N, Hawkins EG, Burkhart K, Strauss DG, Stavitskaya L. Evaluating kratom alkaloids using PHASE. PLoS One 2020; 15: e0229646
  • 40 Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, Avery BA, Balasingam V. Patterns and reasons for kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. J Ethnopharmacol 2020; 249: e112462
  • 41 Babin JK. http://
  • 42 Kamble SH, Sharma A, King TI, Berthold EC, León F, Meyer PKL, Kanumuri SRR, McMahon LR, McCurdy CR, Avery BA. Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicol Lett 2020; 319: 148-154
  • 43 Buckhalter S, Soubeyrand E, Ferrone SAE, Rasmussen DJ, Manduca JD, Al-Abdul-Wahid MS, Frie JA, Khokhar JY, Akhtar TA, Perreault ML. The antidepressant-like and analgesic effects of kratom alkaloids are accompanied by changes in low frequency oscillations but not ΔFosB accumulation. Front Pharmacol 2021; 12: 696461
  • 44 Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabó M, Majumdar S, van Rijn RM. Evaluation of kratom opioid derivatives as potential treatment option for alcohol use disorder. Front Pharmacol 2021; 12: 764885
  • 45 León F, Obeng S, Mottinelli M, Chen Y, King TI, Berthold EC, Kamble SH, Restrepo LF, Patel A, Gamez-Jimenez LR, Lopera-Londoño C, Hiranita T, Sharma A, Hampson AJ, Canal CE, McMahon LR, McCurdy CR. Activity of Mitragyna speciosa (“kratom”) alkaloids at serotonin receptors. J Med Chem 2021; 64: 13510-13523
  • 46 Harris DC. Quantitative Chemical Analysis. 9th ed. New York, NY: W. H. Freeman; 2015
  • 47 AOAC. Appendix F: Guidelines for Standard Method Performance Requirements. In: Latimer jr. GW. ed. Official Methods of Analysis of AOAC International. 20th ed. Rockville, MD, USA: AOAC International; 2016: 1-18
  • 48 AOAC. Appendix K: Guidelines for Dietary Supplements and Botanicals. In: Latimer jr. GW. ed. Official Methods of Analysis of AOAC International. Rockville, MD, USA: AOAC International; 2019: 1-32
  • 49 VanderMolen KM, Cech NB, Paine MF, Oberlies NH. Rapid quantitation of furanocoumarins and flavonoids in grapefruit juice using ultra-performance liquid chromatography. Phytochem Anal 2013; 24: 654-660
  • 50 Graf TN, Cech NB, Polyak SJ, Oberlies NH. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J Pharm Biomed Anal 2016; 126: 26-33
  • 51 Wells G, Prest H, Russ IV CW. Signal, Noise, and Detection Limits in Mass Spectrometry. Accessed January 7, 2022 at: https://www.agilent.com/cs/library/technicaloverviews/public/5990-7651EN.pdf