Synlett 2022; 33(08): 795-799
DOI: 10.1055/a-1796-7444
letter

[4+2]-Cycloaddition Reactions of Aza-o-quinone Methides with Fulvenes: Construction of Tetrahydroquinoline Derivatives

Hang Cheng
a   School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. of China
,
Ding-Ce Yan
b   Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430072, P. R. of China
,
Gang Wang
a   School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. of China
,
Zhao-Lin He
a   School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (No. 21702155), the Scientific Research Project of the Hubei Provincial Department of Education (No. B2019055), and the Open Project of the Key Laboratory of Green Chemical Engineering Processes of the Ministry of Education (No. GCP20190202) for financial support.


Abstract

An efficient [4+2] cycloaddition reaction of fulvenes with aza-o-quinone methides, generated in situ from N-(o-chloromethyl)aryl sulfonamides with the assistance of a base, has been developed to afford a series of tetrahydroquinoline derivatives. The reaction tolerates a wide range of aza-o-quinone methides and fulvenes bearing four- to seven-membered rings to afford the corresponding tetrahydroquinolines in moderate to good yields. Based on a literature analysis, a plausible mechanism for this [4+2] cycloaddition is proposed.

Supporting Information



Publication History

Received: 12 February 2022

Accepted after revision: 13 March 2022

Accepted Manuscript online:
13 March 2022

Article published online:
13 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Crawley SL, Funk RL. Org. Lett. 2003; 5: 3169
    • 1b Darras FH, Kling B, Heilmann J, Decker M. ACS Med. Chem. Lett. 2012; 3: 914
  • 2 Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
  • 3 Gogoi S, Shekarrao K, Duarah A, Bora TC, Gogoi S, Boruah RC. Steroids 2012; 77: 1438
  • 4 Ramesh E, Manian RD, Raghunathan R, Sainath S, Raghunathan M. Bioorg. Med. Chem. 2009; 17: 660
  • 5 Pagliero RJ, Lusvarghi S, Pierini AB, Brun R, Mazzieri MR. Bioorg. Med. Chem. 2010; 18: 142
  • 6 Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
  • 7 Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
  • 8 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
  • 9 Huang H, Yang Y, Zhang X, Zeng W, Liang Y. Tetrahedron Lett. 2013; 54: 6049
  • 10 Jong A.-W, Bao X, Wang Q, Zhu J.-P. Helv. Chim. Acta 2019; 102: e1900002
  • 11 Zhang X, Pan Y, Liang P, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2019; 361: 5552
  • 12 Gui H.-Z, Wu X.-Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 5466
  • 13 Han S.-J, Vogt F, May JA, Krishnan S, Gatti M, Virgil SC, Stoltz BM. J. Org. Chem. 2015; 80: 528
  • 14 Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Adv. Synth. Catal. 2018; 361: 44
  • 15 Lei L, Yao Y.-Y, Jiang L.-J, Lu X.-Q, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
  • 16 Jiang S.-P, Lu W.-Q, Liu Z, Wang G.-W. J. Org. Chem. 2018; 83: 1959
  • 17 Wang H.-Q, Ma W, Sun A, Sun X.-Y, Jiang C, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2021; 19: 1334
    • 18a Chen L, Yang GM, Wang J, Jia QF, Wei J, Du ZY. RSC Adv. 2015; 5: 76696
    • 18b Meng Z, Yang W, Zheng J. Tetrahedron Lett. 2019; 60: 1758
  • 19 Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 20a Long W, Chen S, Zhang X, Fang L, Wang Z. Tetrahedron 2018; 74: 6155
    • 20b Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
    • 20c Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
  • 21 Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
  • 22 Paquette LA, Colapret JA, Andrews DR. J. Org. Chem. 1985; 50: 201
    • 23a Hong B.-C, Wu J.-L, Gupta AK, Hallur MS, Liao J.-H. Org. Lett. 2004; 6: 3453
    • 23b Nair V, Anilkumar G, Radhakrishnan KV, Sheel KC, Rath NP. Tetrahedron 1997; 53: 17361
    • 23c Hong B.-C, Chen F.-L, Chen S.-H, Liao J.-H, Lee G.-H. Org. Lett. 2005; 7: 557
    • 23d Nair V, Mathew B, Menon RS, Mathew S, Vairamani M, Prabhakar S. Tetrahedron 2002; 58: 3235
    • 23e Tanaka K, Yoshizawa H, Atobe M. Synlett 2019; 30: 1194
    • 23f Zhang J, Lin L, He C, Xiong Q, Liu X, Feng X. Chem. Commun. 2017; 54: 74
    • 23g Wei L, Zhu Q, Song Z.-M, Liu K, Wang C.-J. Chem. Commun. 2018; 54: 2506
    • 23h Nair V, Mathew B. Tetrahedron Lett. 2000; 41: 6919
    • 23i Nair V, Jayan CN, Radhakrishnan KV, Anilkumar G, Rath NP. Tetrahedron 2001; 57: 5807
    • 24a Gugelchuk MM, Chan PC.-M, Sprules TJ. J. Org. Chem. 1994; 59: 7723
    • 24b Manikandan S, Shanmugasundaram M, Raghunathan R. Tetrahedron 2002; 58: 597
    • 24c Zhang J, Qiu Z, Xie Z. Organometallics 2017; 36: 3806
    • 24d Zhang J, Qiu Z, Xu P, Xie Z. ChemPlusChem 2014; 79: 1044
    • 24e Hong B.-C, Shr Y.-J, Liao J.-H. Org. Lett. 2002; 4: 663
    • 24f Bhojgude SS, Kaicharla T, Bhunia A, Biju AT. Org. Lett. 2012; 14: 4098
  • 25 Hong B.-C, Shr Y.-J, Wu J.-L, Gupta AK, Lin K.-J. Org. Lett. 2002; 4: 2249
    • 26a Lee KJ, Choi J.-K, Yum EK, Cho SY. Tetrahedron Lett. 2009; 50: 6698
    • 26b Barluenga J, Martínez S, Suárez-Sobrino LA, Tomás M. J. Am. Chem. Soc. 2001; 123: 11113
    • 26c Hong B.-C, Sun S.-S, Tsai Y.-C. J. Org. Chem. 1997; 62: 7717
    • 26d Hong B.-C, Gupta AK, Wu M.-F, Liao J.-H, Lee G.-H. Org. Lett. 2003; 5: 1689
    • 26e Kuthanapillil JM, Thulasi S, Rajan R, Krishnan KS, Suresh E, Radhakrishnan KV. Tetrahedron 2011; 67: 1272
    • 26f Potowski M, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2012; 51: 9512
    • 26g Potowski M, Antonchick AP, Waldmann H. Chem. Commun. 2013; 49: 7800
    • 27a Hong B.-C, Jiang Y.-F, Kumar ES. Bioorg. Med. Chem. Lett. 2001; 11: 1981
    • 27b Wu T.-C, Mareda J, Gupta YN, Houk KN. J. Am. Chem. Soc. 1983; 105: 6996
    • 27c Gupta YN, Doa MJ, Houk KN. J. Am. Chem. Soc. 1982; 104: 7336
    • 27d McLeod D, Cherubini-Celli A, Sivasothirajah N, McCulley CH, Christensen ML, Jørgensen KA. Chem. Eur. J. 2020; 26: 11417
    • 27e Lou Y, Chang J, Jorgensen J, Lemal DM. J. Am. Chem. Soc. 2002; 124: 15302
  • 28 He Z.-L, Teng H.-L, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 2934
  • 29 He Z.-L, Wang C.-J. Chem. Commun. 2015; 51: 534
  • 30 CCDC 2126748 contains the supplementary crystallographic data for compound 3v. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 31 1-(1-Methylethylidene)-4-tosyl-3a,4,9,9a-tetrahydro-1H-cyclopenta[b]quinoline; Typical Procedure Na2CO3 (63.6 mg, 0.6 mmol, 1.2 equiv) was added to a mixture of sulfonamide 1a (148 mg, 0.5 mmol, 1.0 equiv) and fulvene 2a (64 mg, 0.6 mmol, 1.2 equiv) in CHCl3 (5 mL). When the starting material had been consumed (TLC), the solvent was removed and the residue was purified by column chromatography (silica gel, PE–EtOAc) to give a white solid; yield: 155 mg (85%); mp 143–145 °C. 1H NMR (400 MHz, CDCl3): δ = 7.54 (d, J = 8.2 Hz, 2 H), 7.47 (d, J = 7.5 Hz, 1 H), 7.23–7.18 (m, 3 H), 7.10–7.05 (m, 1 H), 6.88 (d, J = 7.4 Hz, 1 H), 6.24 (dd, J = 5.6, 1.8 Hz, 1 H), 5.66 (d, J = 8.3 Hz, 1 H), 5.53 (dd, J = 5.6, 2.0 Hz, 1 H), 3.45 (t, J = 7.9 Hz, 1 H), 2.41 (s, 3 H), 2.26 (d, J = 14.6 Hz, 1 H), 1.68 (s, 3 H), 1.65–1.57 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 143.4, 140.9, 137.9, 135.9, 134.8, 134.7, 132.6, 129.7, 128.2, 128.1, 127.0, 126.8, 126.7, 123.8, 64.6, 43.1, 30.8, 21.6, 21.1, 20.9. HRMS (ESI): m/z [M + H]+ calcd for C22H24NO2S: 366.1522; found: 366.1523.