Synlett 2022; 33(10): 969-972
DOI: 10.1055/a-1804-7546
letter

Rh(III)-Catalyzed Synthesis of 2-Nitro-2H-azirines via sp3 C–H Activation

Xiaojun Huang
a   College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yun Ge
b   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Yang Qian
c   College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Zhengyu Zhang
c   College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. of China
› Institutsangaben
The authors gratefully acknowledge funding from Jiangsu Students’ Platform for Innovation and Entrepreneurship Training Program and the Starting Funding of Research from Nanjing Tech University.


Abstract

An expedient Rh(III)-catalytic method has been described to synthesis of 2-nitro-2H-azirine derivatives from easily accessible β-nitrooxime ethers via sp3 C–H activation process. This protocol features of low catalyst loading, very mild reaction conditions, and tolerating a diverse of functionalities in good yields. A possible reaction pathway is proposed involving [RhCp*Cl2]2-catalyzed sp3 C–H bond activation and pivalic acid elimination steps.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Februar 2022

Angenommen nach Revision: 22. März 2022

Accepted Manuscript online:
22. März 2022

Artikel online veröffentlicht:
10. Mai 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 1b Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 1c Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1d Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 1
    • 1e Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1f Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 1g Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
    • 1h Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
    • 1i Achar T, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 2a Burman JS, Harris RJ, Farr CM. B, Bacsa J, Blakey SB. ACS Catal. 2019; 9: 5474
    • 2b Harris RJ, Park J, Nelson TA. F, Iqbal N, Salgueiro DC, Bacsa J, MacBeth CE, Baik M.-H, Blakey SB. J. Am. Chem. Soc. 2020; 142: 5842
    • 2c Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
    • 2d Liu Y, Yang Y, Wang C, Wang Z, You J. Chem. Commun. 2019; 55: 1068
    • 2e Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 2f Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
    • 3a Si T, Kim HY, Oh K. J. Org. Chem. 2021; 86: 1152
    • 3b Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 3c Huckins JR, Bercot EA, Thiel OR, Hwang T.-L, Bio MM. J. Am. Chem. Soc. 2013; 135: 14492
    • 4a Sujatha C, Nallagangula M, Namitharan K. Org. Lett. 2021; 23: 4219
    • 4b Palacios F, Retana AM. O, de Marigorta EM, de los Santos JM. Eur. J. Org. Chem. 2001; 2401
    • 4c Chen Y.-J, Zhang F.-G, Ma J.-A. Org. Lett. 2021; 23: 6062
    • 5a Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 218326
    • 5b Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
    • 5c Sherikar MS, Devarajappa R, Prabhu KR. J. Org. Chem. 2021; 86: 4625
    • 6a Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 6b Tan X, Liu B, Li X, Li B, Xu S, Song H, Wang B. J. Am. Chem. Soc. 2012; 134: 16163
    • 6c Liu B, Zhou T, Li B, Xu S, Song H, Wang B. Angew. Chem. Int. Ed. 2014; 53: 4191
    • 6d Wang N, Li R, Li L, Xu S, Song H, Wang B. J. Org. Chem. 2014; 79: 5379
    • 6e Chen X, Xie Y, Xiao X, Li G, Deng Y, Jiang H, Zeng W. Chem. Commun. 2015; 51: 15328
    • 6f Hou W, Yang Y, Wu Y, Feng H, Li Y, Zhou B. Chem. Commun. 2016; 52: 9672
    • 6g Ghosh B, Bera S, Ghosh P, Samanta R. Chem. Commun. 2021; 57: 13134
  • 7 Neber PW, Burgard A. Justus Liebigs Ann. Chem. 1932; 493: 281
    • 8a Okamoto K, Shimbayashi T, Yoshida M, Nanya A, Ohe K. Angew. Chem. Int. Ed. 2016; 55: 7199
    • 8b Rieckhoff S, Titze M, Frey W, Peters R. Org. Lett. 2017; 19: 4436
    • 8c Okamoto K, Nanya A, Eguchi A, Ohe K. Angew. Chem. Int. Ed. 2018; 57: 1039
    • 8d Qi X, Jiang Y, Park C.-M. Chem. Commun. 2011; 47: 7848
    • 9a Khumtaveeporn K, Alper H. Acc. Chem. Res. 1995; 28: 414
    • 9b Palacios F, de Retana AM. O, de Marigorta EM, de los Santos JM. Eur. J. Org. Chem. 2001; 2401
    • 9c Khlebnikov AF, Novikov MS. Tetrahedron 2013; 69: 3363
    • 9d Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
    • 9e Jiang Y, Park C.-M, Loh T.-P. Org. Lett. 2014; 16: 3432
    • 9f Chen Y, Yang W, Wu J, Sun W, Loh T.-P, Jiang Y. Org. Lett. 2020; 22: 2038
    • 9g Pokhriyal A, Karki BS, Kant R, Rastogi N. J. Org. Chem. 2021; 86: 4661
  • 10 Ge Y, Sun W, Pei B, Ding J, Jiang Y, Loh T.-P. Org. Lett. 2018; 20: 2774
  • 11 Shin C, Yonezawa Y, Suzuki K, Yoshimura J. Bull. Chem. Soc. Jpn. 1978; 51: 2614
    • 12a Kazuhiro O, Takuya S, Masato Y, Atsushi N, Kouichi O. Angew. Chem. Int. Ed. 2016; 55: 7199
    • 12b Rieckhoff S, Titze M, Frey W, Peters R. Org. Lett. 2017; 19: 4436