Synthesis 2022; 54(16): 3642-3650
DOI: 10.1055/a-1814-9637
paper

Synthesis and Structure–Activity Relationship Studies of Nicot­lactone Analogues as Anti-TMV Agents

a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
,
Yuan Chi
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
,
Cai-Yun Chen
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
,
Fei-Yu Wang
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
,
Jia-Xin Wang
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
,
Dan Xu
b   State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, P. R. of China
c   Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. of China
,
Huan Zhou
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
b   State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, P. R. of China
,
Gong Xu
a   College of Plant Protection, Northwest A & F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. of China
b   State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling 712100, Shaanxi, P. R. of China
› Author Affiliations
This study was financially supported by the Key Research and Development Program of Shaanxi (Program No. 2021NY-140), the Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-185), the Chinese Universities Scientific Fund (Nos. 2452018318, 2452019189, 2452019197), and the Program for Science & Technology Innovation Team of Shaanxi Province (2020TD-035).


Abstract

The synthesis of the originally proposed structure of (±)-nicotlactone A, a potent antiviral lignan with three continuous chiral centers, is reported in 5 steps from methyl acrylate. The key steps of the synthesis included an In-catalyzed regioselective allylation and a Mn-catalyzed Mukaiyama hydration reaction. Our synthetic strategy also enabled us to get the other three epimers and investigate the structure–activity relationship. The NMR data of the synthesized compounds do not match that of the isolated sample, indicating that the structure of nicotlactone A remains to be reassigned. All the synthetic target compounds were evaluated for their anti-tobacco mosaic virus (anti-TMV) activity. Bioassay results indicated that (±)-8-demethylnicotlactone A displayed similar anti-TMV activity to the commercial agent ningnanmycin, thus being a promising candidate or lead compound for developing novel antiviral agents in crop protection.

Supporting Information



Publication History

Received: 05 March 2022

Accepted after revision: 01 April 2022

Accepted Manuscript online:
01 April 2022

Article published online:
10 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Islam W, Qasim M, Noman A, Tayyab M, Chen S, Wang L. Rec. Nat. Prod. 2018; 12: 403
    • 1b Yan C, Dong J, Liu Y, Li Y, Wang Q. J. Agric. Food Chem. 2021; 69: 7565
    • 2a Song H, Liu Y, Liu Y, Wang L, Wang Q. J. Agric. Food Chem. 2014; 62: 1010
    • 2b Wang Z, Wei P, Xizhi X, Liu Y, Wang L, Wang Q. J. Agric. Food Chem. 2012; 60: 8544
    • 2c Zou J, Zhao L, Yi P, An Q, Hao X. J. Agric. Food Chem. 2020; 68: 15015
  • 3 Zhao W, Zeng X, Zhang T, Wang L, Yang G, Chen YK, Hu Q, Miao M. Phytochem. Lett. 2013; 6: 179
    • 4a Yan Y, Zhang JX, Huang T, Mao XY, Gu W, He HP, Di YT, Li SL, Chen DZ, Zhang Y. J. Nat. Prod. 2015; 78: 811
    • 4b Ge YH, Liu KX, Zhang JX, Mu SZ, Hao XJ. J. Agric. Food Chem. 2012; 60: 4289
  • 5 Cai L, Zhang W, Jia H, Feng H, Sun X. Pestic. Biochem. Physiol. 2020; 104589
  • 6 Hu QF, Zhou B, Huang JM, Gao XM, Shu LD, Yang GY, Che CT. J. Nat. Prod. 2013; 76: 292
  • 7 Li L, Li Z, Wang K, Zhao S, Feng J, Li J, Yang P, Liu Y, Wang L, Li Y. J. Agric. Food Chem. 2014; 62: 11080
    • 8a Ouyang M.-A, Wein Y.-S, Zhang Z.-K, Kuo Y.-H. J. Agric. Food Chem. 2007; 55: 6460
    • 8b Wang QY, Deng LL, Liu JJ, Zhang JX, Hao XJ, Mu SZ. Fitoterapia 2015; 101: 117
  • 9 Gao X, Li X, Yang X, Mu H, Chen Y, Yang G, Hu Q. Heterocycles 2012; 85: 147
  • 10 Liao Z, Li X, Lu Y, Shi H, Hu Q. Asian J. Chem. 2012; 24: 4895
  • 11 Tran TD, Pham NB, Booth R, Forster PI, Quinn RJ. J. Nat. Prod. 2016; 79: 1514
  • 12 Pan C, Huang J, Gao Z, Feng W, Yang G, Chen Y, Li Z. Asian J. Chem. 2013; 25: 1860
  • 13 Cheng W, Zhu C, Xu W, Fan X, Yang Y, Li Y, Chen X, Wang W, Shi J. J. Nat. Prod. 2009; 72: 2145
  • 14 Radha Krishna P, Prabhakar S, Sravanthi C. Tetrahedron Lett. 2013; 54: 669
    • 15a Zweig JE, Kim DE, Newhouse TR. Chem. Rev. 2017; 117: 11680
    • 15b Bhunia A, Bergander K, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 8313
    • 15c Donnelly PS, North AJ, Radjah NC, Ricca M, Robertson A, White JM, Rizzacasa MA. Chem. Commun. 2019; 55: 7699
    • 16a Kennedy JW. J, Hall DG. J. Am. Chem. Soc. 2002; 124: 898
    • 16b Elford TG, Arimura Y, Yu SH, Hall DG. J. Org. Chem. 2007; 72: 1276
    • 16c Kennedy JW. J, Hall DG. J. Org. Chem. 2004; 69: 4412
    • 16d Elford TG, Hall DG. Synthesis 2010; 893
  • 17 Ramachandran PV, Pratihar D, Biswas D, Srivastava A, Ram Reddy MV. Org. Lett. 2004; 6: 481
  • 18 Ramachandran PV, Pratihar D, Biswas D. Org. Lett. 2006; 8: 3877
  • 19 Yu SH, Ferguson MJ, McDonald R, Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
  • 20 Inoki S, Kato K, Isayama S, Mukaiyama T. Chem. Lett. 1990; 1869
  • 21 Magnus P, Payne AH, Waring MJ, Scott DA, Lynch V. Tetrahedron Lett. 2000; 41: 9725
    • 22a Kabalka GW, Venkataiah B. Tetrahedron Lett. 2005; 46: 7325
    • 22b Hamann HJ, Abutaleb NS, Pal R, Seleem MN, Ramachandran PV. Bioorg. Chem. 2020; 104: 104183
    • 22c Ramachandran PV, Nair HN. G, Gagare P. Tetrahedron Lett. 2014; 55: 5722
    • 23a Rana S, Blowers EC, Tebbe C, Contreras JI, Radhakrishnan P, Kizhake S, Zhou T, Rajule RN, Arnst JL, Munkarah AR, Rattan R, Natarajan A. J. Med. Chem. 2016; 59: 5121
    • 23b Feng J.-T, Wang D.-L, Wu Y.-L, He Y, Xing Z. Bioorg. Med. Chem. Lett. 2013; 23: 4393
    • 23c Paira M, Banerjee B, Jana S, Mandal SK, Roy SC. Tetrahedron Lett. 2007; 48: 3205
  • 24 Li X.-y, Song B.-a. J. Integr. Agric. 2017; 16: 2772
  • 25 Wang D, Huang M, Gao D, Chen K, Xinxie, Xu W, Li X. Pestic. Biochem. Physiol. 2020; 166: 104449
  • 26 Zhu Y.-J, Wu Q.-F, Fan Z.-J, Huo J.-Q, Zhang J.-L, Zhao B, Lai C, Qian X.-L, Ma D.-J, Wang D.-W. Pest Manag. Sci. 2019; 75: 292
  • 27 Mitra S, Gurrala SR, Coleman RS. J. Org. Chem. 2007; 72. 8724
  • 28 Kaoud TS, Park H, Mitra S, Yan C, Tseng CC, Shi Y, Jose J, Taliaferro JM, Lee K, Ren P. ACS Chem. Biol. 2012; 7. 1873
  • 29 Gooding JrG. V, Hebert TT. Phytopathology 1967; 57: 1285
  • 30 Yan X.-H, Chen J, Di Y.-T, Fang X, Dong J.-H, Sang P, Wang Y.-H, He H.-P, Zhang Z.-K, Hao X.-J. J. Agric. Food Chem. 2010; 58: 1572