Planta Med 2023; 89(04): 423-432
DOI: 10.1055/a-1948-4290
Biological and Pharmacological Activity
Original Papers

Green Tea Catechol (−)-Epigallocatechin Gallate (EGCG) Conjugated with Phenylalanine Shows Enhanced Autophagy Stimulating Activity in Human Aortic Endothelial Cells

Taegum Lee
1   Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, Korea
,
Yeonji Oh
1   Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, Korea
,
Mi Kyoung Kim
2   Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
,
1   Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, Korea
2   Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
› Institutsangaben
Gefördert durch: Konkuk university in 2020

Abstract

(−)-Epigallocatechin gallate (EGCG) is one of the autophagy stimulators that have been reported to protect vascular endothelial cells from oxidative stress-induced damage. In this study, we attempted potentiation of the autophagy-stimulating activity of EGCG in human aortic epithelial cells (HAECs) by using the EGCG-phenylalanine conjugate, E10. Autophagy-stimulating activity of E10 was evaluated by LC3-II measurement in the absence and presence of the lysosomal blocker chloroquine, CTYO-ID staining, and reporter assay using tandem fluorescence-tagged LC3. These experiments revealed significantly enhanced autophagic flux stimulation in HAECs by E10 compared with EGCG. Further elaboration of E10 showed that activation of AMPK through phosphorylation as the major mechanism of its autophagy stimulation. Like other autophagy stimulators, E10 protected HAECs from lipotoxicity as well as accompanying endothelial senescence. Finally, stimulation of autophagy by E10 was shown to protect HAECs from oxidative stress-induced apoptosis. These findings collectively suggest potential clinical implications of E10 for various cardiovascular complications through stimulation of autophagy.

Supporting Information



Publikationsverlauf

Eingereicht: 03. Juli 2022

Angenommen nach Revision: 21. September 2022

Accepted Manuscript online:
21. September 2022

Artikel online veröffentlicht:
07. November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anding AL, Baehrecke EH. Cleaning house: Selective autophagy of organelles. Dev Cell 2017; 41: 10-22
  • 2 Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132: 27-42
  • 3 Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. Autophagy in healthy aging and disease. Nat Aging 2021; 1: 634-650
  • 4 Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci 2018; 19: 3466
  • 5 Ji J, Petropavlovskaia M, Khatchadourian A, Patapas J, Makhlin J, Rosenberg L, Maysinger D. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells. Cell Mol Med 2019; 23: 2890-2900
  • 6 Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, Sunahara KKS, Martins JO, Moustaid-Moussa N. Autophagy in metabolic syndrome: Breaking the wheel by targeting the renin–angiotensin system. Cell Death Dis 2020; 11: 87
  • 7 Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13: 722-737
  • 8 Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012; 8: 719-730
  • 9 Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The role of autophagy in skeletal muscle diseases. Front Physiol 2021; 12: 638983
  • 10 Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, Kroemer G. Autophagy in cardiovascular aging. Circ Res 2018; 123: 803-824
  • 11 Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: a hunter for aggregates. Int J Mol Sci 2020; 21: 3369
  • 12 Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. J Clin Invest 2015; 125: 14-24
  • 13 Zhou J, Farah BL, Sinha RA, Wu Y, Singh BK, Bay BH, Yang CS, Yen PM. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS One 2014; 9: e87161
  • 14 Lee YM, Kim MK, Choo H, Chong Y. Conjugation with phenylalanine enhances autophagy-inducing activity of (−)-epigallocatechin gallate in hepatic cells. J Agric Food Chem 2018; 66: 12741-12747
  • 15 Kim HS, Montana V, Jang HJ, Parpura V, Kim JA. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 2013; 288: 22693-22705
  • 16 Meng J, Chen Y, Wang J, Qiu J, Chang C, Bi F, Wu X, Liu W. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependentPI3K-AKT-mTOR pathway. Ann Transl Med 2020; 8: 200
  • 17 Devika PT, Prince PSM. Protective effect of (−)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: A histopathological study. Biomed Pharmacother 2008; 62: 701-708
  • 18 Devika PT, Prince PSM. Preventive effect of (−)-epigallocatechin gallate on lipids, lipoproteins, and enzymes of lipid metabolism in isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol 2009; 23: 387-393
  • 19 Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8 p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-5728
  • 20 Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010; 140: 313-326
  • 21 Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ. In search of an “autophagomometer”. Autophagy 2009; 5: 585-589
  • 22 Yammine A, Zarrouk A, Nury T, Vejux A, Latruffe N, Vervandier-Fasseur D, Samadi M, Mackrill JJ, Greige-Gerges H, Auezova L, Lizard G. Prevention by dietary polyphenols (resveratrol, quercetin, apigenin) against 7-ketocholesterol-induced oxiapoptophagy in neuronal N2a cells: potential interest for the treatment of neurodegenerative and age-related diseases. Cells 2020; 9: 2346
  • 23 Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 2000; 345: 437-443
  • 24 Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132-141
  • 25 Guo S, Liang Y, Murphy SF, Huang A, Shen H, Kelly DF, Sobrado P, Sheng Z. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications. Autophagy 2015; 11: 560-572
  • 26 Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452-460
  • 27 Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol 2015; 6: 231
  • 28 Zhang H, Dellsperger KC, Zhang C. The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: An update. Basic Res Cardiol 2012; 107: 237
  • 29 Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2019; 1865: 1802-1809
  • 30 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo . Proc Natl Acad Sci U S A 1995; 92: 9363-9367
  • 31 Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069-1075
  • 32 Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem J 2012; 441: 523-540
  • 33 Zheng XT, Wu ZH, Wei Y, Dai JJ, Yu GF, Yuan F, Ye LC. Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis. Mol Cell Biochem 2017; 425: 125-138
  • 34 Gille JJ, Joenje H. Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat Res 1992; 275: 405-414
  • 35 Du J, Teng RJ, Guan T, Eis A, Kaul S, Konduri GG, Shi Y. Role of autophagy in angiogenesis in aortic endothelial cells. Am J Physiol Cell Physiol 2012; 302: C383-C391
  • 36 Fetterman JL, Holbrook M, Flint N, Feng B, Bretón-Romero R, Linder EA, Berk BD, Duess MA, Farb MG, Gokce N, Shirihai OS, Hamburg NM, Vita JA. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis 2016; 247: 207-217
  • 37 De Meyer GRY, Grootaert MOJ, Michiels CF, Kurdi A, Schrijvers DM, Martinet W. Autophagy in vascular disease. Circ Res 2015; 116: 468-479
  • 38 Guo F, Li X, Peng J, Tang Y, Yang Q, Liu L, Wang Z, Jiang Z, Xiao M, Ni C, Chen R, Wei D, Wang GX. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann Biomed Eng 2014; 42: 1978-1988
  • 39 Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol 2011; 164: 213-223
  • 40 Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative stress triggers defective autophagy in endothelial cells: Role in atherothrombosis development. Antioxidants (Basel) 2021; 10: 387
  • 41 Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, Pan Y, Li XJ. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 2012; 8: 812-825
  • 42 Zhou X, Yang J, Zhou M, Zhang Y, Liu Y, Hou P, Zeng X, Yi L, Mi M. Resveratrol attenuates endothelial oxidative injury by inducing autophagy via the activation of transcription factor EB. Nutr Metab (Lond) 2019; 16: 42
  • 43 Cai X, She M, Xu M, Chen H, Li J, Chen X, Zheng D, Liu J, Chen S, Zhu J, Xu X, Li R, Li J, Chen S, Yang X, Li H. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci 2018; 14: 1696-1708
  • 44 Ge D, Jing Q, Meng N, Su L, Zhang Y, Zhang S, Miao J, Zhao J. Regulation of apoptosis and autophagy by sphingosylphosphorylcholine in vascular endothelial cells. J Cell Physiol 2011; 226: 2827-2833