Synthesis 2023; 55(05): 799-807
DOI: 10.1055/a-1958-4406
paper

Pd-G3 XantPhos Mediated Approach to Bis-arylsulfenyl-benzo-2,1,3-thiadiazoles under Microwave Irradiation in DMF: Synthesis and Fluorescent Properties

Ramesh Katla
a   Organic Chemistry Laboratory-IV, School of Chemistry and Food, Federal University of Rio Grande-FURG, Rio Grande, RS, Brazil
,
b   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados-UFGD, Dourados/MS, Brazil
,
Eliézer Quadro Oreste
c   Laboratory of Applied and Technological Physical Chemistry, School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, Brazil
,
Felipe Kessler
c   Laboratory of Applied and Technological Physical Chemistry, School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 8, Rio Grande, RS, Brazil
› Author Affiliations
R.K. is thankful for a ‘CNPq-TWAS fellow’ position. R.K. (Foreign Visiting Professor-Edital N. 03/2020 PROPESP/FURG) thanks Pró-Reitoria de Pesquisa e Pós-Graduação-Federal University of Rio Grande (PROPESP-FURG), Rio Grande-RS for a Visiting Professorship.


Abstract

Synthesis of bis-arylsulfenyl-benzo-2,1,3-thiadiazoles was accomplished using a Pd-G3 XantPhos as a simple and inexpensive catalyst. Numerous benzene thiols reacted well with 4,7-dibromo-benzo-2,1,3-thiadiazole in DMF, using K2CO3 as the base, obtaining high product yields in a short reaction time. All the synthesized compounds showed remarkable fluorescence properties with emission wavelengths in the visible range. Due to their unique properties, these compounds have potential for application as image probes in fluorescence microscopy. The study found that these compounds have a wide range of potential uses in the area of sensors, as well as displaying other useful photophysical properties.

Supporting Information



Publication History

Received: 14 July 2022

Accepted after revision: 11 October 2022

Accepted Manuscript online:
11 October 2022

Article published online:
09 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
    • 1b Hu W, Guo Z, Chu F, Bai A, Yi X, Cheng G, Li J. Bioorg. Med. Chem. Lett. 2003; 13: 1153
    • 1c Caboni P, Sammelson RE, Casida JE. J. Agric. Food Chem. 2003; 24: 7055
    • 1d Wang Y, Chackalamannil S, Hu Z, Clader ZW, Greenlee W, Billard W, Binch HI. I. I, Crosby G, Ruperto V, Duffy RA, McQuade R, Lachowicz J. Bioorg. Med. Chem. Lett. 2000; 10: 2247
    • 1e Nielson SF, Nielson EO, Olsen GM, Liljefors T, Peters D. J. Med. Chem. 2000; 43: 2217
    • 1f De Martino G, Edler MC, La Regina G, Cosuccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 2a Metzner P, Thuillier A. In Sulfur Reagents in Organic Synthesis . Katritzky AR, MethCohn O, Rees CW. Academic Press; San Diego: 1994
    • 2b Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 2c Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
  • 3 Kabir MS, Lorenz M, Van Linn ML, Namjoshi OA, Ara S, Cook JM. J. Org. Chem. 2010; 75: 3626
    • 4a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 4b Ananikov VP, Zalesskiy SS, Beletskaya IP. Curr. Org. Synth. 2011; 8: 2
  • 5 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 6a Neto BA. D, Lapis AA. M, da Silva EN. Jr, Dupont J. Eur. J. Org. Chem. 2012; 228
    • 6b Kato S, Matsumoto T, Ishi-i T, Thiemann T, Shigeiwa M, Gorohmaru H, Maeda S, Yamashita Y, Mataka S. Chem. Commun. 2004; 2342
    • 7a Thomas KR. J, Velusamy M, Lin JT, Sun SS, Tao YT, Chuen CH. Chem. Commun. 2004; 2328
    • 7b Thomas KR. J, Lin JT, Velusamy M, Tao YT, Chuen CH. Adv. Funct. Mater. 2004; 14: 83
    • 8a Mataka S, Takahashi K, Imura T, Tashiro M. J. Heterocycl. Chem. 1982; 19: 1481
    • 8b Gozzo F. J. Agric. Food Chem. 2003; 51: 4487
    • 8c Balasankar T, Gopalakrishnan M, Nagarajan S. Eur. J. Med. Chem. 2005; 40: 728
  • 9 Neto BA. D, Carvalho PH. P. R, Correa JR. Acc. Chem. Res. 2015; 48: 1560
  • 10 dos Santos BF, Pereira CF, Pinz MP, Oliveira AR, Brand G, Katla R, Domingues NL. C. Appl. Organomet. Chem. 2020; e5650
  • 11 Kukreja G, Phukan S, Kodam J, More DM, Uravane MV, Palle VP, Kamboj RK. WO2013005157 A1, 2013
  • 12 Balaguez RA, Ricordi VG, Duarte RC, Toldo JM, Santos CM, Schneider PH, Gonçalves PF. B, Rodembusch FS, Alves D. RSC Adv. 2016; 6: 49613
  • 13 Yamashita Y, One K, Tomura M, Tanaka S. Tetrahedron 1997; 53: 10169
    • 14a Katla R, Katla R, da Silva CD. G, dos Santos BF, Branquinho TA, Ferro CT. B, Domingues NL. C. ChemistrySelect 2019; 4: 1
    • 14b de Oliveira AR, da Silva CD. G, Katla R, Rocha MP. D, Albuquerque TB, Kupfer VL, Rinaldi AW, Domingues NL. C. ChemistrySelect 2017; 2: 4462
    • 14c Katla R, Chowrasia R, da Silva CD. G, de Oliveira AR, dos Santos BF, Domingues NL. C. Synthesis 2017; 5143
    • 14d Katla R, Chowrasia R, Manjari PS, da Silva CD. G, dos Santos BF, Domingues NL. C. New J. Chem. 2016; 40: 9471
    • 14e Chowrasia R, Katla R, Rocha MP. D, Branquinho TA, de Oliveira AR, Manjari PS, Domingues NL. C. Tetrahedron Lett. 2016; 57: 1656
    • 14f de Oliveira AR, Katla R, Rocha MP. D, Albuquerque TB, da Silva CD. G, Kupfer VL, Rinaldi AW, Domingues NL. C. Synthesis 2016; 4489
    • 14g Katla R, Katla R, Domingues NL. C. ChemistrySelect 2022; 7: e202200582
  • 15 Katla R, Katla R, Domingues NL. C. Synthesis 2022; 54: 4608
    • 16a Nogueira CW, Rocha JB. T. The Chemistry of Organic Selenium and Tellurium Compounds. In Patai’s Chemistry of Functional Groups, Vol. 3. Rappoport Z. Wiley; Chichester: 2011
    • 16b Carland M, Fenner T. The Use of Selenium-Based Drugs in Medicine. In Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. Gielen M, Ticking ER. T. Wiley; Chichester: 2005
    • 17a Kim HS, Kim YJ, Lee H, Park KY, Lee C, Chin CS. Angew. Chem. Int. Ed. 2002; 41: 4300
    • 17b Lenardão EJ, Feijó S, Thurow JO, Perin G, Jacob RG, Silveira CC. Tetrahedron Lett. 2009; 50: 5215
    • 17c Lenardão EJ, Borges EL, Mendes SR, Perin G, Jacob RG. Tetrahedron Lett. 2008; 49: 1919
    • 17d Thurow S, Pereira VA, Martinez DM, Alves D, Perin G, Jacob RG, Lenardão EJ. Tetrahedron Lett. 2011; 52: 640
    • 17e Alberto EE, Rossato LL, Alves SH, Alves D, Braga AL. Org. Biomol. Chem. 2011; 9: 1001
    • 18a Rampon DS, Rodembusch FS, Schneider JM. F. M, Bechtold IH, Gonçalves PF. B, Merlo A, Schneider PH. J. Mater. Chem. 2010; 20: 715
    • 18b Samb I, Bell J, Toullec PY, Michelet V, Leray I. Org. Lett. 2011; 13: 1182
    • 18c Goswami S, Hazra A, Chakrabarty R, Fun HK. Org. Lett. 2009; 11: 4350
    • 18d Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G. J. Am. Chem. Soc. 2007; 129: 11666
    • 19a Vieira AA, Cristiano R, Bortoluzzi AJ, Gallardo H. J. Mol. Struct. 2008; 875: 364
    • 19b Moro AV, Ferreira PC, Migowski P, Rodembusch FS, Dupont J, Lüdtke DS. Tetrahedron 2013; 69: 201
  • 20 Frizon TE. A, Valdivia JC. M, Westrup JL, Duarte RC, Zapp E, Domiciano KG, Rodembusch FS, Dal-Bó AG. Dyes Pigm. 2016; 135: 26
  • 21 Benevides TO, Regis E, Nicoleti CR, Bechtold IH, Vieira AA. Dyes Pigm. 2019; 163: 300
  • 22 Tao YM, Li HY, Xu QL, Zhu YC, Kang LC, Zheng YX, Zuo JL, You XZ. Synth. Met. 2011; 161: 718
  • 23 Oliveira FF. D, Santos DC. B. D, Lapis AA. M, Corrêa JR, Gomes AF, Gozzo FC, Moreira PF. Jr, Oliveira VC, Quina FH, Neto BA. D. Bioorg. Med. Chem. Lett. 2010; 20: 6001
  • 24 Gudim NS, Knyazeva EA, Mikhalchenko LV, Golovanov IS, Popov VV, Obruchnikova NV, Rakitin OA. Molecules 2021; 26: 4931
  • 25 Roig B, Chalmin E, Touraud E, Thomas O. Talanta 2002; 56: 585
  • 26 Hao Y, Yin Q, Zhang Y, Xu M, Chen S. Molecules 2019; 24: 3716