Synthesis 2023; 55(11): 1736-1743
DOI: 10.1055/a-1959-1930
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

Chiral Acyl Radicals Generated by Visible Light Enable Stereoselective Access to 3,3-Disubstituted Oxindoles: Application toward the Synthesis of (–)- and (+)-Physovenine

Josef Späth
,
Meghan J. Oddy
,
,
The authors would like to thank the Royal Society and the African Academy of Sciences (FLR\R1\190531), the Royal Society of Chemistry (RF21-7183233767), the National Research Foundation (W.F.P., grant no.: 138082), and the University of Cape Town (W.F.P.; M.J.O.; J.S. [UCT, B.R.A.A.S]) for their funding contributions.


Abstract

Exploration of the repurposing of N-acyl chiral auxiliaries for use as novel chiral C1 radical synthons is reported. The acyl radicals are generated under visible-light-mediated single-electron transfer of N-hydroxyphthalimido ester, and their use toward the stereoselective synthesis of 3,3-disubstituted oxindoles via a radical addition–cyclisation sequence is demonstrated. The downstream synthetic utility of this method is showcased in the formal synthesis of the natural product (–)-physovenine. TEMPO trapping experiments support the proposed reaction mechanism.

Supporting Information



Publikationsverlauf

Eingereicht: 09. September 2022

Angenommen: 12. Oktober 2022

Accepted Manuscript online:
12. Oktober 2022

Artikel online veröffentlicht:
08. Dezember 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ruiz-Sanchez P, Savina SA, Albericio F, Álvarez M. Chem. Eur. J. 2011; 17: 1388
    • 2a Triggle DJ, Mitchell JM, Filler R. CNS Drug Rev. 1998; 4: 87
    • 2b Proudfoot A. Toxicol. Rev. 2006; 25: 99
    • 2c Dubrovskii VN, Shalabodov AD, Belkin AV. Bull. Exp. Biol. Med. 2018; 166: 50
  • 3 Yu Q.-S, Liu C, Brzostowska M, Chrisey L, Brossi A, Greig NH, Atack JR, Soncrant TT, Rapoport SI, Radunz H.-E. Helv. Chem. Acta 1991; 74: 761
    • 4a Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 4b Liu Y.-L, Wang X.-P, Wei J, Li Y. Org. Biomol. Chem. 2022; 20: 538
  • 5 Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
  • 6 Radhoff N, Studer A. Chem. Sci. 2022; 13: 3875
  • 7 Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 4284

    • For selected reviews on radical cascades, see:
    • 8a Huang H.-M, Garduño-Castro MH, Morril C, Procter DJ. Chem. Soc. Rev. 2019; 48: 4626
    • 8b Liao J, Yang X, Ouyang L, Lai Y, Huang J, Luo R. Org. Chem. Front. 2021; 8: 1345
    • 8c Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
    • 9a Gnas Y, Glorius F. Synthesis 2006; 1899
    • 9b Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Alves Nogueira Diaz M. Chirality 2019; 31: 776
    • 9c Heravi MM, Zadsirjan V, Farajpour B. RSC Adv. 2016; 6: 30498
    • 10a Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
    • 10b Szőllősi G. Catal. Sci. Technol. 2018; 8: 389
    • 10c Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
    • 10d Han B, He X.-H, Liu Y.-Q, He G, Peng C, Li J.-L. Chem. Soc. Rev. 2021; 50: 1522
  • 11 Hawkins JM, Watson TJ. N. Angew. Chem. Int. Ed. 2004; 43: 3224
    • 12a Smith PD, Graham MA, Munday RH, Donald CS, McGuire TM, Kyne RE. Synthetic Methods in Drug Discovery, Vol. 2. RSC; Cambridge: 2016: 139
    • 12b Chang S, Halperin SD, Moore J, Britton R. Stereoselective Synthesis of Drugs and Natural Products . John Wiley & Sons; Hoboken: 2013: 45
    • 13a Garcia-Martinez J. Angew. Chem. Int. Ed. 2021; 60: 4956
    • 13b Keijer T, Bakker V, Slootweg JC. Nat. Chem. 2019; 11: 190

      Recent reviews on photoinduced acyl radical chemistry:
    • 14a Matuso BT, Oliveira PH. R, Pissinati EF, Vega KB, de Jesus IV, Correia JT. M, Paixco M. Chem. Commun. 2022; 58: 8322
    • 14b Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
    • 14c Liu Y.-L, Ouyang Y.-J, Zheng H, Liu H, Wei W.-T. Chem. Commun. 2021; 57: 6111
    • 14d Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303

    • See also:
    • 14e Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Angew. Chem. Int. Ed. 2020; 59: 18646
    • 14f Zhu H.-L, Zeng F.-L, Chen X.-L, Sun K, Li H.-C, Yuan X.-Y, Qu L.-B, Yu B. Org. Lett. 2021; 23: 2976
    • 14g Zhu D.-L, Wu Q, Young DJ, Wang H, Ren Z.-G, Li H.-X. Org. Lett. 2020; 22: 6832
    • 14h Su Y, Zhang R, Xue W, Liu X, Zhao Y, Wang K.-H, Huang D, Huo C, Hu Y. Org. Biomol. Chem. 2020; 18: 1940
    • 14i Yan J, Tang H, Kuek EJ. R, Shi X, Liu C, Zhang M, Piper JL, Duan S, Wu J. Nat. Commun. 2021; 12: 7214
    • 15a Bixa T, Hunter R, Andrijevic A, Petersen W, Dhoro F, Su H. J. Org. Chem. 2015; 80: 762
    • 15b Gokada MR, Hunter R, Andrijevic A, Petersen WF, Venter G, Samanta S. J. Org. Chem. 2017; 82: 10650
  • 16 Mazodze CM, Petersen WF. Org. Biomol. Chem. 2022; 20: 3469
    • 17a Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
    • 17b Petersen WF, Taylor RJ. K, Donald JR. Org. Biomol. Chem. 2017; 15: 5831
  • 18 Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
  • 19 Jia J, Sarker M, Steinmetz MG, Shukla R, Rathore R. J. Org. Chem. 2008; 73: 8867
  • 20 Fabry DC, Stodulski M, Hoerner S, Gulder T. Chem. Eur. J. 2012; 18: 10834
  • 21 Oddy MJ, Kusza DA, Petersen WF. Org. Lett. 2021; 23: 8963
  • 22 Cui Z, Du M.-D. Adv. Synth. Catal. 2018; 360: 93