Synlett 2023; 34(02): 183-187
DOI: 10.1055/a-1960-4340
letter

Bridged Peptide Analogue of RA-VII, an Antitumor Bicyclic Hexapeptide

,
Taka-aki Hinosawa
,
Yoshie Nakagawa
,
Sho Ito
,
Ji-Ean Lee
,
Tomoyo Hasuda
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Numbers 24590024 and 19K07141).


Abstract

A bridged peptide analogue of RA-VII was designed, in which the α carbons of residues 1 and 4 were linked by a tetramethylene chain to restrict the conformational freedom of the backbone of the 18-membered cyclopeptide. This peptide analogue was synthesized by a ring-closing metathesis reaction of [l-2-allylglycine-1, l-2-allylglycine-4]RA-VII and a subsequent hydrogenation of the resulting olefinic compound. Compared with RA-VII, the analogue showed much weaker cytotoxic activity toward human promyelocytic leukemia HL-60 cells and human colon carcinoma HCT-116 cells, which may be accounted for by the difference in the orientation of the Tyr-6 phenyl ring plane between the analogue and RA-VII.

Supporting Information



Publication History

Received: 08 September 2022

Accepted after revision: 13 October 2022

Accepted Manuscript online:
13 October 2022

Article published online:
23 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Itokawa H, Takeya K, Mihara K, Mori N, Hamanaka T, Sonobe T, Iitaka Y. Chem. Pharm. Bull. 1983; 31: 1424
  • 2 Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H. In The Alkaloids, Vol. 49 . Cordell GA. Academic Press; New York: 1997: 301
  • 3 Jolad SD, Hoffman JJ, Torrance SJ, Wiedhopf RM, Cole JR, Arora SK, Bates RB, Gargiulo RL, Kriek GR. J. Am. Chem. Soc. 1977; 99: 8040
    • 4a Majima H, Tsukagoshi S, Furue H, Suminaga M, Sakamoto K, Wakabayashi R, Kishino S, Niitani H, Murata A, Genma A, Nukariya N, Uematsu K, Furuta T, Kurihara M, Yoshida F, Isomura S, Takemoto T, Hirashima M, Izumi T, Nakao I, Ohashi Y, Ito K, Asai R. Jpn. J. Cancer Chemother. 1993; 20: 67
    • 4b Yoshida F, Asai R, Majima H, Tsukagoshi S, Furue H, Suminaga M, Sakamoto K, Niitani H, Murata A, Kurihara M, Izumi T, Nakao I, Ohashi Y, Ito K. Jpn. J. Cancer Chemother. 1994; 21: 199
  • 5 Zalacaín M, Zaera E, Vázquez D, Jiménez A. FEBS Lett. 1982; 148: 95
  • 6 Sirdeshpande BV, Toogood PL. Bioorg. Chem. 1995; 23: 460
  • 7 Fujiwara H, Saito S, Hitotsuyanagi Y, Takeya K, Ohizumi Y. Cancer Lett. 2004; 209: 223
  • 8 Boger DL, Myers JB, Yohannes D, Kitos PA, Suntomwat O, Kitos JC. Bioorg. Med. Chem. Lett. 1991; 1: 313
  • 9 Itokawa H, Kondo K, Hitotsuyanagi Y, Nakamura A, Morita H, Takeya K. Chem. Pharm. Bull. 1993; 41: 1266
  • 10 Hitotsuyanagi Y, Odagiri M, Kato S, Kusano J.-i, Hasuda T, Fukaya H, Takeya K. Chem. Eur. J. 2012; 18: 2839
  • 11 Hitotsuyanagi Y, Lee J.-E, Kato S, Kim I.-H, Kohashi H, Fukaya H, Takeya K. Bioorg. Med. Chem. 2011; 19: 2458
  • 12 Nicolaou KC, Estrada AA, Zak M, Lee SH, Safina BS. Angew. Chem. Int. Ed. 2005; 44: 1378
  • 13 Hitotsuyanagi Y, Hasuda T, Matsumoto Y, Itokawa H, Takeya K, Yamaguchi K. Chem. Commun. 2000; 17: 163314

    • Synthesis of 14-membered cycloisodityrosines, see:
    • 14a Boger DL, Yohannes D. J. Am. Chem. Soc. 1991; 113: 1427
    • 14b Boger DL, Patane MA, Zhou J. J. Am. Chem. Soc. 1994; 116: 8544
    • 14c Boger DL, Zhou J. J. Org. Chem. 1996; 61: 3938
    • 14d Beugelmans R, Bigot A, Bois-Choussy M, Zhu J. J. Org. Chem. 1996; 61: 771
    • 14e Bigot A, Dau M.-ET. H, Zhu J. J. Org. Chem. 1999; 64: 6283
    • 14f Cristau P, Martin MT, Dau M.-ET. H, Vors J.-P, Zhu J. Org. Lett. 2004; 6: 3183
    • 14g Hitotsuyanagi Y, Ishikawa H, Naito S, Takeya K. Tetrahedron Lett. 2003; 44: 5901
    • 14h Hitotsuyanagi Y, Hirai M, Odagiri M, Komine M, Hasuda T, Fukaya H, Takeya K. Chem. Asian J. 2019; 14: 205
    • 14i Hitotsuyanagi Y. J. Nat. Med. 2021; 75: 752
    • 14j Inaba T, Umezawa I, Yuasa M, Inoue T, Mihashi S, Itokawa H, Ogura K. J. Org. Chem. 1987; 52: 2957
  • 15 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 16 In the construction of the 18-membered peptide ring of 1 and its analogues, macrocyclization was generally carried out between residues 1 and 6.14a, b, e, h–j In the synthesis of 3, however, macrocyclization between these residues was unsuccessful. Compound 15 did not give 3 under any macrocyclization conditions (DPPA/Et3N/DMF, EDC·HCl/HOOBt/DMF, or pentafluorophenyl diphenylphosphinate/DIEA/DMF or CH2Cl2), whereas macrocyclization of 16 with DPPA/NaHCO3/DMF gave a cyclized product in 44% yield, although this product was an epimer of 4 at Tyr-6 (Figure 5).
  • 17 1H (600 MHz) and 13C (150 MHz) NMR data of analogue 3 (Figure 6) in chloroform-d at 300 K is given below. Conformer-IAA-1 (α, δH 4.52/δC 52.4; βa, δH 1.49/δC, 29.7; βb, δH 2.39; γ, δH 1.29, 1.01, δC 22.1, C=O, δC 172.5; NH, δH 7.45), Ala-2 (α, δH 4.64/δC 45.8; β, δH 1.36 (3 H)/δC 6.1; C=O, δC 171.5; NH, δH 5.91), Tyr-3 (α, δH 3.63/δC 69.1; β, δH 3.45, 3.39/δC 32.5; γ, δC 130.9; δ, δH 7.05 (2 H)/δC 130.3 (2 C); ε, δH 6.83 (2 H)/δC 113.9 (2 C); ζ, δC 158.3; C=O, δC 168.3; NMe, δH 2.93 (3 H)/δC 40.5; OMe, δH 3.79 (3 H)/δC 55.3), AA-4 (α, δH 4.83/δC 51.9; βa, δH 1.74/δC 27.8; βb, δH 2.34; γ, δH 1.17, 1.06, δC 21.6, C=O, δC 172.4; NH, δH 7.29), Tyr-5 (α, δH 5.31/δC 56.4; βa, δH 3.47/δC 35.9; βb, δH 3.30; γ, δC 132.4; δa, δH 7.35/δC 132.0; δb, δH 7.50/δC 130.6; εa, δH 7.22/δC 127.9; εb, δH 7.21/δC 124.4; ζ, δC 159.1; C=O, δC 171.4; NMe, δH 3.30 (3 H)/δC 32.3), Tyr-6 (α, δH 3.28/δC 70.9; βa, δH 2.96/δC 31.0; βb, δH 3.28; γ, δC 132.4; δa, δH 6.64/δC 121.4; δb, δH 4.07/δC 117.9; εa, δH 6.73/δC 111.6; εb, δC 152.9; ζ, δC 146.0; C=O, δC 167.6; NMe, δH 3.20 (3 H)/δC 43.2; OMe, δH 3.92 (3 H)/δC 56.0).Conformer-IIAA-1 (α, δH 4.58/δC 53.7; βa, δH 1.52/δC 30.8; βb, δH 2.14; γ, δH 1.21, 1.02, δC 23.1, C=O, δC 172.5; NH, δH 7.83), Ala-2 (α, δH 4.94/δC 42.8; β, δH 0.74 (3 H)/δC 17.1; C=O, δC 172.6; NH, δH 5.93), Tyr-3 (α, δH 4.96/δC 62.5; β, δH 3.16, 2.84/δC 33.7; γ, δC 128.7; δ, δH 7.06 (2 H)/δC 130.1 (2 C); ε, δH 6.83 (2 H)/δC 114.3 (2 C); ζ, δC 158.7; C=O, δC 166.5; NMe, δH 2.98 (3 H)/δC 29.1; OMe, δH 3.76 (3 H)/δC 55.4), AA-4 (α, δH 4.98/δC 52.1; βa, δH 1.99/δC 28.9; βb, δH 1.77; δH 1.17 (2 H), δC 21.7, C=O, δC 172.4; NH, δH 8.27), Tyr-5 (α, δH 5.35/δC 57.2; βa, δH 3.57/δC 35.3; βb, δH 3.26; γ, δC 132.3; δa, δH 7.35/δC 131.8; δb, δH 7.54/δC 130.5; εa, δH 7.22/δC 127.9; εb, δH 7.23/δC 124.6; ζ, δC 159.2; C=O, δC 171.8; NMe, δH 3.28 (3 H)/δC 32.8), Tyr-6 (α, δH 3.29/δC 71.3; βa, δH 2.96/δC 31.1; βb, δH 3.33; γ, δC 132.5; δa, δH 6.66/δC 121.4; δb, δH 4.03/δC 118.1; εa, δH 6.73/δC 111.7; εb, δC 153.0; ζ, δC 146.0; C=O, δC 167.9; NMe, δH 3.20 (3 H)/δC 43.1; OMe, δH 3.93 (3 H)/δC 56.1)
  • 18 Morita H, Kondo K, Hitotsuyanagi Y, Takeya K, Itokawa H, Tomioka N, Itai A, Iitaka Y. Tetrahedron 1991; 47: 2757
  • 19 The procedure for the cytotoxicity assay has previously been described, see: Inaba Y, Hasuda T, Hitotsuyanagi Y, Aoyagi Y, Fujikawa N, Onozaki A, Watanabe A, Kinoshita T, Takeya K. J. Nat. Prod. 2013; 76: 1085
  • 20 Hitotsuyanagi Y, Sasaki S.-i, Matsumoto Y, Yamaguchi K, Itokawa H, Takeya K. J. Am. Chem. Soc. 2003; 125: 7284
  • 21 The software used for this calculation was MacroModel ver. 7.0 (Schrödinger Inc.). The Monte Carlo (MC) search was configured using the ‘automatic setup’ routine in MacroModel with all amide configuration in the macrocycle fixed as trans. The calculation consisted of 20,000 MC steps with 1000 iterations per step using the MMFFs force field and the PR conjugate gradient with no solvation.