Synlett 2023; 34(12): 1309-1316
DOI: 10.1055/a-1994-3327
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Catalyst-Free Reactions under Biocompatible Conditions

Mi Ren
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
,
Ming-Zhu Lu
b   College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. of China
c   Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
d   School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, P. R. of China
,
Teck-Peng Loh
a   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
b   College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. of China
c   Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
› Institutsangaben
We gratefully acknowledge generous financial support from the National Natural Science Foundation of China (no. 22101095) and the Innovation and Entrepreneurship Talents Plan of Jiangsu Province (M.-Z.L.). We also gratefully acknowledge the financial support from Distinguished University Professor Grant (Nanyang Technological University), AcRF Tier 1 grants from the Ministry of Education of Singapore (RG11/20 and RT14/20), and the Agency for Science, Technology and Research (A*STAR) under its MTC Individual Research Grants (M21K2c0114).


Abstract

Catalyst-free biocompatible reactions are a class of green chemical processes that are also applicable to the field of chemical biology. In this account, we detail our journey in this exciting area of research since 2000. Various types of catalyst-free biocompatible reactions, such as the Mukaiyama aldol reactions and thiol-specific click reactions, and their applications to the functionalization of proteins are described. These reactions work well without destroying the three-dimensional structures of the proteins. Other reactions, including the C–SO2 and C–N bond-forming reactions, are also discussed. These reactions work in a truly green manner in which the use of organic solvents can be totally avoided. This toolbox of green chemical processes will certainly facilitate the work of researchers in the pharmaceutical industries.

1 Introduction

2 C–C Bond-Formation Reactions: The Mukaiyama Aldol Reaction

3 C–S Bond-Formation Reactions: Allenic Amide as the Electrophiles

4 C–SO2R Bond-Formation Reactions

4.1 Allylic Alcohols as the Electrophiles

4.2 Allenic Carbonyl Compounds as the Electrophiles

5 C–N Bond-Formation Reactions

6 Conclusions and Outlook



Publikationsverlauf

Eingereicht: 30. Oktober 2022

Angenommen nach Revision: 07. Dezember 2022

Accepted Manuscript online:
07. Dezember 2022

Artikel online veröffentlicht:
15. Februar 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gawande MB, Bonifácio VD. B, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 5522
    • 2a Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 2b Rommney DK, Arnold FH, Lipshutz BH, Li C.-J. J. Org. Chem. 2018; 83: 7319
    • 2c Kitanosono T, Masuda K, Xu P, Kobayashi S. Chem. Rev. 2018; 118: 679
    • 2d Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
  • 4 Li C.-J, Cheng L. Chem. Soc. Rev. 2006; 35: 68
    • 5a Loh T.-P, Chua G.-L. Chem. Commun. 2006; 2739
    • 5b Shen Z.-L, Wang Y.-F, Chok Y.-K, Xu Y.-H, Loh T.-P. Chem. Rev. 2013; 113: 271
    • 5c Kang MS, Kong TW. S, Khoo JY. X, Loh T.-P. Chem. Sci. 2021; 12: 13613
    • 6a Rideout DC, Breslow R. J. Am. Chem. Soc. 1980; 102: 7816
    • 6b Breslow R, Maitra U, Rideout D. Tetrahedron Lett. 1983; 24: 1901
  • 8 Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
  • 9 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 10 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 11a Saxon E, Bertozzi CR. Science 2000; 287: 2007
    • 11b Kiick KL, Saxon E, Tirrell DA, Bertozzi CR. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 19
    • 11c Agard NJ, Prescher JA, Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
    • 12a Fouad MA, Abdel-Hamid H, Ayoup MS. RSC Adv. 2020; 10: 42644
    • 12b Flores-Reyes JC, Islas-Jácome A, González-Zamora E. Org. Chem. Front. 2021; 8: 5460
    • 13a Baruah B, Deb ML. Org. Biomol. Chem. 2021; 19: 1191
    • 13b Sudha S, Pasha MA. Green Synth. Catal. 2022; 3: 190
  • 14 Kitanosono T, Kobayashi S. Adv. Synth. Catal. 2013; 355: 3095
  • 16 Loh T.-P, Feng L.-C, Wei L.-L. Tetrahedron 2000; 56: 7309
  • 17 Alam J, Keller TH, Loh T.-P. J. Am. Chem. Soc. 2010; 132: 9546
  • 18 Gilmore JM, Scheck RA, Esser-Kahn AP, Joshi NS, Francis MB. Angew. Chem. Int. Ed. 2006; 45: 5307
  • 19 Kang MS, Khoo JY. X, Jia Z, Loh T.-P. Green Synth. Catal. 2022; 3: 309
  • 20 Abbas A, Xing B, Loh T.-P. Angew. Chem. Int. Ed. 2014; 53: 7491
  • 21 Chen Y, Yang W, Wu J, Sun W, Loh T.-P, Jiang Y. Org. Lett. 2020; 22: 2038
  • 22 Wu L.-H, Zhou S, Luo Q.-F, Tian J.-S, Loh T.-P. Org. Lett. 2020; 22: 8193
  • 23 El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
  • 24 Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh T.-P. Nat. Commun. 2018; 9: 1321
  • 25 Fang Y, Luo Z, Xu X. RSC Adv. 2016; 6: 59661
  • 26 Goh J, Maraswami M, Loh T.-P. Org. Lett. 2021; 23: 1060
  • 27 Goh J, Ong SK, Tan YS, Loh T.-P. Green Chem. 2022; 24: 3321