Synlett 2023; 34(11): 1280-1284
DOI: 10.1055/a-2007-2958
letter

Ligand-Free Palladium-Catalyzed Substoichiometric Base ­Mediated Carbonylation of Aryl Iodides with Alkenylboronic Acids under Ambient Conditions

Lili Tang
a   Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Yanqun Gao
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
,
Junjie Chen
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
,
Linlin Yang
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
,
Bing Xiao
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
,
Ge Shen
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
,
Yuejun Ouyang
a   Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Wei Han
b   Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, Nanjing 210023, P. R. of China
› Author Affiliations
The work was sponsored by the Natural Science Foundation of Hunan Province (2020JJ4487, 2020JJ4073), the Qing Lan Project Young and Middle-Aged Academic Leaders of Jiangsu Provincial Colleges and Universities, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Abstract

A highly efficient, practical, and ligand-free palladium-catalyzed carbonylation of aryl iodides with alkenylboronic acids has been developed. A variety of chalcones and α-branched enones were isolated in satisfactory to good yields with good substrate compatibilities under an ambient pressure of CO at room temperature. Moreover, the transformation proceeds well in the presence of a substoichiometric amount of base. The merit of this strategy as a late-stage functionalization platform has been demonstrated by modifications of complex substrates derived from estrone and 3-phenyl-l-alanine.

Supporting Information



Publication History

Received: 05 December 2022

Accepted after revision: 04 January 2023

Accepted Manuscript online:
04 January 2023

Article published online:
02 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chem. Rev. 2017; 117: 7762
    • 1b Damazio RG, Zanatta AP, Cazarolli LH, Chiaradia LD, Mascarello A, Nunes RJ, Yunes RA, Barreto Silva FR. M. Eur. J. Med. Chem. 2010; 45: 1332
    • 1c Das U, Doroudi A, Gul HI, Pati HN, Kawase M, Sakagami H, Chu Q, Stables JP, Dimmock JR. Bioorg. Med. Chem. 2010; 18: 2219
    • 1d Grealis JP, Müller-Bunz H, Ortin Y, Casey M, McGlinchey MJ. Eur. J. Org. Chem. 2013; 332
    • 1e Juvale K, Pape VF. S, Wiese M. Bioorg. Med. Chem. 2012; 20: 346
    • 1f Leow P.-C, Bahety P, Boon CP, Lee CY, Tan KL, Yang T, Ee P.-LR. Eur. J. Med. Chem. 2014; 71: 67
    • 2a Elkanzi NA. A, Hrichi H, Alolayan RA, Derafa W, Zahou FM, Bakr RB. ACS Omega 2022; 7: 27769
    • 2b Claisen L, Claparède A. Ber. Dtsch. Chem. Ges. 1881; 14: 2460
    • 2c Schmidt JG. Ber. Dtsch. Chem. Ges. 1881; 14: 1459
    • 2d Niu C, Tuerxuntayi A, Li G, Kabas M, Dong C.-Z, Aisa HA. Chin. Chem. Lett. 2017; 28: 1533
    • 2e Mukaiyama T. Org. React. (N. Y.) 1982; 28: 203
    • 2f Zhong Q, Rongjian L. Yingyong Huaxue 1990; 7: 89
    • 2g Iranpoor N, Kazemi F. Tetrahedron 1998; 54: 9475
    • 2h Nakano T, Irifune S, Umano S, Inada A, Ishii Y, Ogawa M. J. Org. Chem. 1987; 52: 2239
    • 2i Si ZK, Zhang Q, Xue ZM, Zhu YY, Ming L, Sheng QR, Liu YG. Chin. Chem. Lett. 2011; 22: 1025
    • 2j Kwon MS, Kim N, Seo SH, Park IS, Cheedrala RK, Park J. Angew. Chem. Int. Ed. 2005; 44: 6913
    • 2k Yamada YM. A, Uozumi Y. Tetrahedron 2007; 63: 8492
    • 3a Zhang S, Neumann H, Beller M. Chem. Soc. Rev. 2020; 49: 3187
    • 3b Ning Y, Ohwada T, Chen F.-E. Green Synth. Catal. 2021; 2: 247
    • 3c Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry. Gabriele B. Wiley-VCH; Weinheim: 2021
    • 3d Beller M, Eckert M. Angew. Chem. Int. Ed. 2000; 39: 1010
    • 3e Lu S.-M, Alper H. J. Am. Chem. Soc. 2005; 127: 14776
    • 3f Jacobi von Wangelin A, Neumann H, Beller M. In Catalytic Carbonylation Reactions . Beller M. Springer-Verlag; Berlin: 2006: 207
    • 3g Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 3h Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 3i Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
    • 3j Gabriele B, Mancuso R, Salerno G. Eur. J. Org. Chem. 2012; 6825
    • 3k Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 3l Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
    • 3m Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090
    • 3n Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
    • 3o Xu F, Han W. Youji Huaxue 2018; 38: 2519
    • 4a Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
    • 4b Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
    • 4c Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2012; 7: 282
    • 4d Sumino S, Ui T, Hamada Y, Fukuyama T, Ryu I. Org. Lett. 2015; 17: 4952
    • 4e Gøgsig TM, Nielsen DU, Lindhardt AT, Skrydstrup T. Org. Lett. 2012; 14: 2536
    • 4f Hermange P, Gøgsig TM, Lindhardt AT, Taaning RH, Skrydstrup T. Org. Lett. 2011; 13: 2444
  • 5 Zhang Z, Liu Y, Gong M, Zhao X, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 1139
  • 6 Geng H.-Q, Wang L.-C, Hou C.-Y, Wu X.-F. Org. Lett. 2020; 22: 1160
  • 7 Yang Z, Gong P.-X, Chen J, Zhang J, Gong X, Han W. Synlett 2021; 32: 1207
    • 8a Zhao H, Du H, Yuan X, Wang T, Han W. Green Chem. 2016; 18: 5782
    • 8b Xu F, Li D, Han W. Green Chem. 2019; 21: 2911
    • 8c Jin F, Han W. Chem. Commun. 2015; 51: 9133
    • 8d Zhong Y, Han W. Chem. Commun. 2014; 50: 3874
    • 8e Yu D, Xu F, Li D, Han W. Adv. Synth. Catal. 2019; 361: 3102
    • 8f Zhou Q, Wei S, Han W. J. Org. Chem. 2014; 79: 1454
    • 8g Zhong Y, Gong X, Zhu X, Ni Z, Wang H, Fu J, Han W. RSC Adv. 2014; 4: 63216
    • 8h Han W, Liu B, Chen J, Zhou Q. Synlett 2017; 28: 835
    • 8i Cheng L, Zhong Y, Ni Z, Du H, Jin F, Rong Q, Han W. RSC Adv. 2014; 4: 44312
  • 9 Poly(ethylene glycol) (PEG) is often used as a good phase-transfer agent. This property favors gas–liquid–solid multiphase catalytic reactions. Additionally, PEG is a highly polar solvent that is capable of strongly solvating polar molecules such as carbon monoxide to reduce mass-transfer resistance. These two positive properties probably permit PEG to show excellent performance in the current transformation. For a review, see: Chen J, Spear SK, Huddleston JG, Rogers RD. Green Chem. 2005; 7: 64
  • 10 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
  • 11 Ye J, Zhao J, Xu J, Mao Y, Zhang YJ. Chem. Commun. 2013; 49: 9761
    • 12a Han W, Liu C, Jin Z.-L. Org. Lett. 2007; 9: 4005
    • 12b Han W, Liu C, Jin Z.-L. Adv. Synth. Catal. 2008; 350: 501
  • 13 (2E)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one (3aa): Typical Procedure A 25-mL flask was charged with Pd(OAc)2 (0.005 mmol, 1.2 mg), 1-iodo-4-nitrobenzene (1a; 0.25 mmol, 62.9 mg), (E)-styrylboronic acid (2a; 0.30 mmol, 45.8 mg), Na2CO3 (0.125 mmol, 13.3 mg), PivOH (0.125 mmol, 13.2 mg), and PEG-400 (2.0 g), then subjected to several standard cycles of evacuation and backfilling with pure dry CO. The mixture was then stirred at RT and atmospheric pressure for 3 h. When the reaction was complete, the mixture was extracted with Et2O (3 × 15 mL). The organic phases were combined, and the volatile components were evaporated under reduced pressure. The crude product was purified by column chromatography [silica gel, PE–Et2O (100:1 to 10:1)] to give a yellow solid; yield: 59 mg (94%, E/Z > 99:1); mp 143–144 °C. 1H NMR (400 MHz, CDCl3): δ = 8.37 (d, J = 8.8 Hz, 2 H), 8.17 (d, J = 8.8 Hz, 2 H), 7.88 (d, J = 15.6 Hz, 1 H), 7.69–7.67 (m, 2 H), 7.51 (d, J = 15.6 Hz, 1 H), 7.48–7.45 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 189.0, 150.0, 146.8, 143.0, 134.3, 131.2, 129.4, 129.1, 128.7, 123.8, 121.2.