Synthesis 2023; 55(13): 2037-2046
DOI: 10.1055/a-2019-1455
paper

Trifluoroethanol-Mediated Cyclization of Two-Carbon-Tethered Epoxide–N-Boc Pairs: Completely Regioselective Synthesis of 3,6-Disubstituted 1,3-Oxazinan-2-ones

Jonali Das
,
Raju Chouhan
,
Hemi Borgohain
,
Biraj Jyoti Borah
,
Sajal Kumar Das
This work was financially supported by the DBT-Twinning Project (BT/PR25173/NER/95/1055/2017) granted by the North Eastern Region Biotechnology Programme Management Cell (NER-BPMC), Department of Biotechnology, Ministry of Science and Technology, New Delhi, India.


Abstract

The regio- and diastereoselective construction of biologically relevant cyclic carbamates under operationally simple and mild transition-metal-free conditions is challenging and has led to a demand for efficient methods for their synthesis. The intramolecular ring-opening cyclization of N-Boc-tethered epoxides leading to the formation of cyclic carbamates is equipped with many favorable synthetic features, including easy accessibility of starting materials in a stereodefined form, high diversification points in the substrates, and a favorable entropy factor. However, its use in the construction of 1,3-oxazinan-2-ones remains largely neglected. Specifically, prior to 2020, only few 1,3-oxazinan-2-ones were successfully synthesized using this strategy. Moreover, our very own recent attempt to access these heterocycles using one-carbon-tethered N-Boc–epoxide pairs was met with little success as the process furnished either only 1,3-oxazolidin-2-ones or nearly equal amounts of 1,3-oxazolidin-2-ones and 1,3-oxazinan-2-ones. Herein, we demonstrate that when the epoxide and N-Boc moieties are connected by a two-carbon tether, the cyclization could deliver 1,3-oxazinan-2-ones containing vicinal stereocenters, as sole regioisomers and diastereomers in high yields (up to 95% yield), irrespective of whether the distal epoxide substituent is alkyl or aryl, or the epoxide is cis- or trans-configured.

Supporting Information



Publication History

Received: 01 April 2022

Accepted after revision: 24 January 2023

Accepted Manuscript online:
24 January 2023

Article published online:
02 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang G, Ella-Menye J.-R, Sharma V. Bioorg. Med. Chem. Lett. 2006; 16: 2177
  • 2 Cassady JM, Chan KK, Floss HG, Leistner E. Chem. Pharm. Bull. 2004; 52: 1
  • 3 Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS, Pettibone DJ, O’Brien JA, Ball RG, Balani SK, Lin JH, Chen I.-W, Schleif WA, Sardana VV, Long WJ, Byrnes VW, Emini EA. Antimicrob. Agents Chemother. 1995; 39: 2602
  • 4 Zhuang L, Tice CM, Xu Z, Zhao W, Cacatian S, Ye Y.-J, Singh SB, Lindblom P, McKeever BM, Krosky PM, Zhao Y, Lala D, Kruk BA, Meng S, Howard L, Johnson JA, Bukhtiyarov Y, Panemangalore R, Guo J, Guo R, Himmelsbach F, Hamilton B, Schuler-Metz A, Schauerte H, Gregg R, McGeehan GM, Leftheris K, Claremon DA. Bioorg. Med. Chem. 2017; 25: 3649
  • 5 Ullrich T, Baumann K, Welzenbach K, Schmutz S, Camenisch G, Meingassner JG, Weitz-Schmidt G. Bioorg. Med. Chem. Lett. 2004; 14: 2483
  • 6 Davies SG, Garner AC, Roberts PM, Smith AD, Sweet MJ, Thomson JE. Org. Biomol. Chem. 2006; 4: 2753
    • 7a Schmid SC, Guzei IA, Schomaker JM. Angew. Chem. Int. Ed. 2017; 56: 12229
    • 7b Hilborn JW, Lu Z.-H, Jurgens AR, Fang QK, Byers P, Wald SA, Senanayake CH. Tetrahedron Lett. 2001; 42: 8919

      For selected reviews, see:
    • 8a Sun F, Van der Eycken EV, Feng HP. Adv. Synth. Catal. 2021; 363: 5168
    • 8b Jadhavar S, Vaja MD, Dhameliya TM, Chakraborti AK. Curr. Med. Chem. 2015; 22: 4379
    • 8c Naresh A, Rao MV, Kotapalli SS, Ummanni R, Rao BV. Eur. J. Med. Chem. 2014; 80: 295
    • 8d Pandit N, Singla RK, Shrivastava B. Int. J. Med. Chem. 2012; 159285 DOI: 10.1155/2012/159285.
    • 9a Mancuso R, Ziccarelli I, Pomelli CS, Cuocci C, Della Ca’ N, Olivieri D, Carfagna C, Gabriele B. J. Catal. 2020; 387: 145
    • 9b Gallo RD. C, Campovilla OC, Ahmad A, Burtoloso AC. B. Front. Chem. 2019; 7: 62
    • 9c Wang W, Fu Y, Li Y, Yao R, Liu L, Chang W, Li J. Org. Chem. Front. 2018; 5: 3331
    • 9d Quinodoz P, Quelhas A, Wright K, Drouillat B, Marrot J, Couty F. Eur. J. Org. Chem. 2017; 2621
    • 9e Buyck T, Wang Q, Zhu J. J. Am. Chem. Soc. 2014; 136: 11524
    • 9f Alcaide B, Almendros P, Quirós MT, Fernández I. Beilstein J. Org. Chem. 2013; 9: 818
    • 9g Davies SG, Fletcher AM, Kurosawa W, Lee JA, Poce G, Roberts PM, Thomson JE, Williamson DM. J. Org. Chem. 2010; 75: 7745
    • 9h Uddin N, Ulicki JS, Foersterling FH, Hossain MM. Tetrahedron Lett. 2011; 52: 4353
    • 9i Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 9j Robles-Machin R, Adrio J, Carretero JC. J. Org. Chem. 2006; 71: 5023
  • 10 Agami C, Couty F. Tetrahedron 2002; 58: 2701
    • 11a Baldwin JE, Flinn A. Tetrahedron Lett. 1987; 28: 3605
    • 11b Witiak DT, Rotella DP, Filppi JA, Gallucci J. J. Med. Chem. 1987; 30: 1327
    • 11c Urabe H, Aoyama Y, Sato F. Tetrahedron 1992; 48: 5639
    • 11d Vanucci C, Brusson X, Verdel V, Zana F, Dhimane H, Lhommet G. Tetrahedron Lett. 1995; 36: 2971
    • 11e Fernández de la Pradilla R, Colomer I, Ureña M, Viso A. Org. Lett. 2011; 13: 2468
    • 11f Colomer I, Ureña M, Viso A, Fernández de la Pradilla R. Chem. Eur. J. 2020; 26: 4620
  • 12 Fan H, Wan Y, Pan P, Cai W, Liu S, Liu C, Zhang Y. Chem. Commun. 2020; 56: 86
  • 13 Ju M, Weatherly CD, Guzei IA, Schomaker JM. Angew. Chem. Int. Ed. 2017; 56: 9944
  • 14 Borgohain H, Talukdar K, Sarma B, Das SK. Org. Biomol. Chem. 2020; 18: 7401
    • 15a Das AJ, Das SK. J. Org. Chem. 2022; 87: 5085
    • 15b Das J, Borah BJ, Das SK. Eur. J. Org. Chem. 2022; e202101421
    • 15c Das AJ, Chouhan R, Das SK. J. Org. Chem. 2021; 86: 8274
    • 15d Das AJ, Borgohain H, Sarma B, Das SK. Org. Biomol. Chem. 2020; 18: 441
    • 15e Das J, Das SK. Org. Biomol. Chem. 2021; 19: 6761
    • 15f Das J, Borah BJ, Das SK. Org. Biomol. Chem. 2020; 18: 220
    • 15g Borgohain H, Devi R, Dheer D, Borah BJ, Shankar R, Das SK. Eur. J. Org. Chem. 2017; 6671
    • 15h Devi R, Das J, Sarma B, Das SK. Org. Biomol. Chem. 2018; 16: 5846
  • 16 From the experience of our previous work in this area (see ref. 14), we knew that the two possible regioisomeric products, if formed, always would have a significantly large difference in their Rf values. Since TLC analysis of the crude products showed only one spot in each case of the present work, we were sure about the formation of only one regioisomer in each case without NMR analysis of all crude compounds.
  • 17 Noteworthy, intramolecular epoxide ring-opening cyclization processes often deliver the smaller-ring exo-products dominantly over the regioisomeric, larger-ring endo-products. In such processes, however, electronically biasing the epoxide ring with a directing group (such as an aryl, vinyl, trimethylsilyl, nitro, or cyano group) may generate the endo-products as the major/sole products. For a review on this topic, see: Morten CJ, Byers JA, Van Dyke AR, Vilotijevic I, Jamison TF. Chem. Soc. Rev. 2009; 38: 3175
  • 18 Zhang Y.-Q, Poppel C, Panfilova A, Bohle F, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 9719
    • 19a Justicia J, Jiménez T, Miguel D, Contreras-Montoya R, Chahboun R, Álvarez-Manzaneda E, Collado-Sanz D, Cárdenas DJ, Cuerva JM. Chem. Eur. J. 2013; 19: 14484
    • 19b Byers JA, Jamison TF. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 16724
    • 19c Nicolaou KC, Prasad CV. C, Somers PK, Hwang C.-K. J. Am. Chem. Soc. 1989; 111: 5330