Synlett 2023; 34(11): 1241-1246
DOI: 10.1055/a-2030-7826
letter
Special Edition Thieme Chemistry Journals Awardees 2022

Organophotoredox-Catalyzed Oxidative C(sp2)–H Alkylation of N-Heteroarenes with Dihydroquinazolinones by C–C Cleavage

Pinku Prasad Mondal
,
Amit Pal
,
Subham Das
,
Sariga Mangalamundackal Vijayan
,
Anagha Veluthanath Nair
,
Shubham Ojha
,
Basudev Sahoo
This work was supported by SERB, India (File: SRG/2021/000572). P.P.M. and A.P. thank the Ministry of Education, India for their Prime Minister’s Research Fellowship. S.D. thanks UGC, India for research fellowship.


Dedicated to Professor Matthias Beller on his 60th birthday

Abstract

We report a visible-light-mediated, organophotoredox-catalyzed, C(sp2)–H alkylation of N-heteroarenes with dihydroquinazolines, prepared from aliphatic ketones, under oxidative conditions. This protocol represents a metal-free approach to the effective construction of C–C bonds through a Minisci-type reaction, formally activating the native C–H bond of the N-heteroarene and an α-C–C bond of a readily available ketone. The mild nature of this method accommodates a wide variety of N-heteroarenes and ketones, tolerating a wide range of functional groups.

Supporting Information



Publication History

Received: 24 December 2022

Accepted after revision: 08 February 2023

Accepted Manuscript online:
08 February 2023

Article published online:
09 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Heravi MM, Zadsirijan V. RSC Adv. 2020; 10: 44247
    • 2b Vitaku ED, Smith T, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 2c Venditto VJ, Simanek EE. Mol. Pharmaceutics 2010; 7: 307
  • 3 Guan A.-Y, Liu C.-L, Sun X.-F, Xie Y, Wang M.-A. Bioorg. Med. Chem. 2016; 24: 342
  • 4 Leclerc N, Sanaur S, Galmiche L, Mathevet F, Attias A.-J, Fave J.-L, Roussel J, Hapiot P, Lemaître N, Geffroy B. Chem. Mater. 2005; 17: 502
    • 6a Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
    • 6b Procter RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 6c Parida SK, Hota SK, Kumar R, Murarka S. Chem. Asian J. 2021; 16: 879
    • 6d Ghosh A, Pyne P, Ghosh S, Ghosh D, Majumder S, Hajra A. Green Chem. 2022; 24: 3056
    • 7a Minisci F, Bernardi R, Bertini F, Galli R. Tetrahedron 1971; 27: 3575
    • 7b Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
    • 8a Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
    • 8b Huang C.-Y, Li J, Li C.-J. Chem. Sci. 2022; 13: 5465
    • 8c Liu Q, Huo C, Fu Y, Du Z. Org. Biomol. Chem. 2022; 20: 6721
    • 8d Bortolato T, Cuadros S, Simionato G, Dell’Amico L. Chem. Commun. 2022; 58: 1263
    • 8e Hota SK, Jinan D, Panda SP, Pan R, Sahoo B. Asian J. Org. Chem. 2021; 10: 1848
    • 8f Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
    • 9a Santos MS, Cybularczyk-Cecotka M, König B, Giedyk M. Chem. Eur. J. 2020; 26: 15323
    • 9b Dong J, Lyu X, Wang Z, Wang X, Song H, Liu Y, Wang Q. Chem. Sci. 2019; 10: 976
    • 9c Wang Z, Dong J, Hao Y, Li Y, Liu Y, Song H, Wang Q. J. Org. Chem. 2019; 84: 16245
    • 9d Li J, Huang C.-Y, Han J.-T, Li C.-J. ACS Catal. 2021; 11: 14148
    • 9e Yan H, Hou Z.-W, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 9f Ikarashi G, Morofuji T, Kano N. Chem. Commun. 2020; 56: 10006
    • 9g Xu F, Lai X.-L, Xu H.-C. Synlett 2021; 32: 369
    • 9h Pitre SP, Muuronen M, Fishman DA, Overman LE. ACS Catal. 2019; 9: 3413
    • 9i Jin J, MacMillan DW. C. Nature 2015; 525: 87
    • 9j Wang X, Shao X, Cao Z, Wu X, Zhu C. Adv. Synth. Catal. 2022; 364: 1200
    • 9k Wang Z, Ji X, Zhao J, Huang H. Green Chem. 2019; 21: 5512
    • 9l Chen X, Luo X, Wang K, Liang F, Wang P. Synlett 2021; 32: 733
    • 9m Lai X, Shu X, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
    • 9n Zhang X.-Y, Weng W.-Z, Liang H, Yang H, Zhang B. Org. Lett. 2018; 20: 4686
    • 9o Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057 ; corrigendum: ACS Catal. 2022, 12, 6640
    • 9p Li J, Tan SS, Kyne SH, Chan PW. H. Adv. Synth. Catal. 2022; 364: 802
    • 9q Procter RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
    • 9r Chen W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
    • 9s Wang K, Liu X, Yang S, Tian Y, Zhou M, Zhou J, Jia X, Li B, Liu S, Chen J. Org. Lett. 2022; 24: 3471
    • 9t Li D.-S, Liu T, Hong Y, Cao C.-L, Wu J, Deng H.-P. ACS Catal. 2022; 12: 4473
    • 9u Bhakat M, Khatua B, Guin J. Org. Lett. 2022; 24: 5276
    • 9v Zhang L, Pfund B, Wenger OS, Hu X. Angew. Chem. Int. Ed. 2022; 61: e202202649
    • 9w Tian H, Yang H, Tian C, An G, Li G. Org. Lett. 2020; 22: 7709
    • 9x Rammal F, Gao D, Boujnah S, Gaumont AC, Hussein AA, Lakhdar S. Org. Lett. 2020; 22: 7671
    • 9y Zhao H, Jin J. Org. Lett. 2019; 21: 6179
    • 9z Dong J, Yue F, Song H, Liu Y, Wang Q. Chem. Commun. 2020; 56: 12652
    • 10a Kim Y.-S, Shin D.-H. J. Agric. Food Chem. 2004; 52: 781
    • 10b Baser KH. C, Özek T, Akgül A, Tümen G. J. Essent. Oil Res. 1993; 5: 215
    • 10c Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
    • 10d Cao S, Foster C, Lazo JS, Kingston DG. I. Bioorg. Med. Chem. 2005; 13: 5830
    • 11a Xia Y, Dong G. Nat. Rev. Chem. 2020; 4: 600
    • 11b Deng L, Dong G. Trends Chem. 2020; 2: 183
    • 11c Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 12a Li L, Fang L, Wu W, Zhu J. Org. Lett. 2020; 22: 5401
    • 12b Lv X.-Y, Abrams R, Martin R. Nat. Commun. 2022; 13: 2394
    • 12c Lee S.-C, Li L.-Y, Tsai Z.-N, Lee Y.-H, Tsao Y.-T, Huang P.-G, Cheng C.-K, Lin H.-B, Chen T.-W, Yang C.-H, Chiu C.-C, Liao H.-H. Org. Lett. 2022; 24: 85
    • 12d Cong F, Mega RS, Chen J, Day CS, Martin R. Angew. Chem. Int. Ed. 2022; in press; DOI DOI: 10.1002/anie.202214633.
    • 12e Mondal PP, Pal A, Prakash AK, Sahoo B. Chem. Commun. 2022; 58: 13202
    • 12f Lv X.-Y, Abrams R, Martin R. Angew. Chem. Int. Ed. 2022; 62: e202217386
  • 13 Kaila N, Janz KM, Huang A, Moretto AF, Bedard PW. ; WO 2008121817, 2008
  • 14 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 15 See the Supporting Information.
  • 16 Compounds 3; General Procedure In a heat-gun-dried Schlenk tube equipped with a Teflon-coated stirrer bar, the appropriate N-heteroarene 1 (0.2 mmol, 1.0 equiv), dihydroquinazolinone substrate 2 (0.5 mmol, 2.5 equiv), 4CzIPN (0.004 mmol, 2 mol%), and K2S2O8 (0.4 mmol, 2.0 equiv) were dissolved in anhyd DMF (1 mL) under an inert atmosphere. The mixture was stirred at rt for 18 h in the presence of light from blue LEDs. The reaction was then quenched by the addition of aq Na2CO3 (2 mL) and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with H2O (5 mL) and brine (5 mL), and the solvents were removed under reduced pressure. The crude residue was purified by flash column chromatography (silica gel, PE–EtOAc).2-Cyclohexyl-4-methylquinoline (3aa)Colorless liquid; yield: 73%. 1H NMR (500 MHz, CDCl3): δ = 8.15 (d, J = 8.4 Hz, 1 H), 8.03 (d, J = 8.3 Hz, 1 H), 7.75 (ddd, J = 8.3, 6.9, 1.4 Hz, 1 H), 7.60 (ddd, J = 8.2, 6.9, 1.2 Hz, 1 H), 7.26 (s, 1 H), 2.98 (tt, J = 12.1, 3.4 Hz, 1 H), 2.75 (s, 3 H), 2.10–2.12 (m, 2 H), 1.98 (dt, J = 12.8, 3.0 Hz, 2 H), 1.77–1.81 (m, 1 H), 1.62 (qd, J = 12.6, 3.1 Hz, 2 H), 1.62 (qt, J = 12.8, 3.3 Hz, 2 H), 1.44 (tt, J = 12.8, 3.6 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 166.7, 147.8, 144.4, 129.7, 129.1, 127.2, 125.5, 123.7, 120.4, 47.8, 33.0, 26.7, 26.3, 19.0.4-Methyl-2-(1-phenylcyclopropyl)quinoline (3af)Colorless liquid; yield: 77%. 1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J = 8.5 Hz, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.67 (ddd, J = 8.4, 6.9, 1.3 Hz, 1 H), 7.48 (ddd, J = 8.2, 6.9, 1.2 Hz, 1 H), 7.43–7.45 (m, 2 H), 7.36–7.39 (m, 2 H), 7.28–7.30 (m, 1 H), 6.95 (s, 1 H), 2.55 (s, 3 H), 1.81 (dd, J = 6.2, 3.5 Hz, 2 H), 1.36 (dd, J = 6.5, 3.8 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 163.9, 147.8, 144.0, 143.6, 130.3, 129.8, 129.1, 128.7, 126.8, 126.7, 125.5, 123.7, 122.1, 32.3, 18.8, 17.3.(4-Cyclohexylquinolin-2-yl)(piperidin-1-yl)methanon (3da)Colorless liquid; yield: 51%. 1H NMR (500 MHz, CDCl3): δ = 8.01–8.31 (m, 2 H), 7.70 (t, J = 7.6 Hz, 1 H), 7.58 (t, J = 7.7 Hz, 1 H), 7.51 (s, 1 H), 3.78–3.80 (m, 2 H), 3.47–3.49 (m, 2 H), 3.30–3.36 (m, 1 H), 2.00–2.02 (m, 2 H), 1.91–1.94 (m, 2 H), 1.82–1.85 (m, 1 H), 1.67–1.74 (m, 4 H), 1.49–1.61 (m, 6 H), 1.29–1.37 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 168.3, 154.8, 154.6, 147.2, 130.9, 129.4, 127.0, 126.8, 123.1, 116.8, 48.5, 43.4, 39.3, 33.6, 27.0, 26.7, 26.4, 25.7, 24.8.1-Cyclohexyl-6-(4-methoxyphenyl)isoquinoline (3ha)White solid; yield: 76%; mp 118 °C. 1H NMR (500 MHz, CDCl3): δ = 8.48 (d, J = 5.7 Hz, 1 H), 8.26 (d, J = 8.9 Hz, 1 H), 7.93 (d, J = 1.6 Hz, 1 H), 7.80 (dd, J = 8.8, 1.8 Hz, 1 H), 7.66–7.68 (m, 2 H), 7.50 (d, J = 5.7 Hz, 1 H), 7.03–7.05 (m, 2 H), 3.88 (s, 3 H), 3.57 (tt, J = 11.7, 3.2 Hz, 1 H), 1.93–2.01 (m, 4 H), 1.80–1.88 (m, 3 H), 1.50–1.57 (m, 2 H), 1.38–1.44 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 165.7, 160.0, 142.5, 141.9, 137.0, 132.8, 128.7, 126.4, 125.5, 125.2, 124.5, 119.2, 114.6, 55.6, 41.8, 32.8, 27.1, 26.4.