Synthesis 2023; 55(13): 2027-2036
DOI: 10.1055/a-2031-4549
paper

Erythrosine B Catalyzed Synthesis of trans-Dihydro-4H-furo[3,2-c]chromen-4-ones through Photocatalytic Dehydrogenative sp 3 C–O Bond Formation

Sourav Das
,
Suvam Paul
,
Tathagata Choudhuri
,
Papiya Sikdar
,
A.K.B. acknowledges the financial support from the SERB, DST (File no. EEQ/2018/000498). A.K.B. also acknowledges the University of Kalyani (PRG) for financial support. S.D. (UGC-JRF) and S.P. (CSIR-JRF) acknowledge the UGC New Delhi and CSIR New Delhi for their fellowships. T.C. (URS) acknowledges the University of Kalyani for his fellowship.


Abstract

A simple and efficient visible-light-induced methodology has been developed for the selective synthesis of dihydro-4H-furo[3,2-c]chromen-4-one derivatives via dehydrogenative coupling reaction. The methodology is highly useful for the synthesis of varieties of dihydro-4H-furo[3,2-c]chromen-4-ones from readily accessible reactants under oxygen atmosphere. Importantly, the additive-free approach has been also demonstrated for this transformation. The results of the mechanistic investigation showed that this dehydrogenative reaction proceeded through a radical pathway. Additionally, the synthesized dihydro-4H-furo[3,2-c]chromen-4-one has been transformed into different 4H-furo[3,2-c]chromen-4-ones through simple protocols.

Supporting Information



Publication History

Received: 02 January 2023

Accepted after revision: 09 February 2023

Accepted Manuscript online:
09 February 2023

Article published online:
15 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Li C.-J. Chin. J. Chem. 2022; 40: 838
    • 1b Tian T, Li Z, Li C.-J. Green Chem. 2021; 23: 6789
    • 1c Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
    • 1d Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 1e Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 2a Tabey A, Vemuri PY, Patureau FW. Chem. Sci. 2021; 12: 14343
    • 2b Bao X, Jiang W, Liang J, Huo C. Org. Chem. Front. 2020; 7: 2107
    • 2c Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D, Alonso F. Org. Chem. Front. 2020; 7: 1717
    • 2d Phillips AM. F, da Silva M. deF. C. G, Pombeiro AJ. L. Catalysts 2020; 10: 529
    • 2e Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3a Egorov IN, Mukherjee A, Santra S, Kopchuk DS, Kovalev IS, Liu Y, Zyryanov GV, Majee A, Chupakhin ON, Ranu BC. Adv. Synth. Catal. 2022; 364: 2462
    • 3b Tsang YL, Choy PY, Leung MP, He X, Kwong FY. Org. Chem. Front. 2022; 9: 1992
    • 3c Batra A, Singh P, Singh KN. Asian J. Org. Chem. 2021; 10: 1024
    • 3d Batra A, Singh KN. Eur. J. Org. Chem. 2020; 676
    • 3e Bras JL, Muzart J. Catalysts 2020; 10: 571
    • 3f Luo M.-J, Li Y, Ouyang X.-H, Li J.-H, He D.-L. Chem. Comm. 2020; 56: 2707
    • 3g Parvatkar PT, Manetsch R, Banik BK. Chem. Asian J. 2019; 14: 6
    • 3h Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
  • 4 Bagdi AK, Rahman M, Bhattacherjee D, Zyryanov GV, Ghosh S, Chupakhin ON, Hajra A. Green. Chem. 2020; 22: 6632
    • 5a Parasrama M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 5b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 6a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 6b Hari DP, König B. Chem. Commun. 2014; 50: 6688
    • 6c Yang W.-C, Sun Y, Shen L.-Y, Xie X, Yu B. Mol. Catal. 2023; 535: 112819
    • 6d Shi A, Xiang P, Wu Y, Ge C, Liu Y, Sun K, Yu B. Synlett 2023; 34: 457
    • 6e Xiang P, Sun K, Wang S, Chen X, Qu L, Yu B. Chin. Chem. Lett. 2022; 33: 5074
    • 6f Gui Q.-W, Teng F, Yang H, Xun C, Huang W.-J, Lu Z.-Q, Zhu M.-X, Ouyang W.-T, He W.-M. Chem. Asian J. 2022; 17: e202101139
    • 7a Koutoulogenis GS, Spiliopoulou N, Kokotos CG. Photochem. Photobiol. Sci. 2022; 21: 687
    • 7b Mandal M, Brahmachari G. J. Org. Chem. 2022; 87: 4777
    • 7c Si X, Zhang L, Wu Z, Rudolph M, Asiri AM, Hashmi AS. K. Org. Lett. 2020; 22: 5844
    • 7d Beniazza R, Abadie B, Remisse L, Jardel D, Lastecoueres D, Vincent J.-M. Chem. Commun. 2017; 53: 12708
  • 8 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications, 3rd ed. Wiley-VCH; Weinheim: 2012
    • 9a Hung W.-L, Suh JH, Wang Y. J. Food Drug Anal. 2017; 25: 71
    • 9b Calcio Gaudino E, Tagliapietra S, Martina K, Palmisano G, Cravotto G. RSC Adv. 2016; 6: 46394
    • 9c Medina FG, Marrero JG, Macias-Alonso M, Gonzalez MC, Cordova-Guerrero I, Teissier Garcia AG, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
    • 9d da Silva AJ. M, Melo PA, Silva NM. V, Brito FV, Buarque CD, de Souza DV, Rodrigues VP, Pocas ES. C, Noel F, Albuquerque EX, Costa PR. R. Bioorg. Med. Chem. Lett. 2001; 11: 283
    • 9e Pocas ES. C, Lopes DV. S, da Silva AJ. M, Pimenta PH. C, Leitao FB, Netto CD, Buarque CD, Brito FV, Costa PR. R, Noel F. Bioorg. Med. Chem. 2006; 14: 7962
    • 10a Cortés I, Cala LJ, Bracca AB. J, Kaufman TS. RSC Adv. 2020; 10: 33344
    • 10b Kale A, Bingi C, Sripada S, Kumar CG, Atmakur K. Bioorg. Med. Chem. Lett. 2016; 26: 4899
    • 10c Oketch-Rabah HA, Lemmich E, Dossaji SF, Theander TG, Olsen CE, Cornett C, Kharazmi A, Christensen SB. J. Nat. Prod. 1997; 60: 458
    • 11a Jana A, Ali D, Bhaumick P, Choudhury LH. J. Org. Chem. 2022; 87: 7763
    • 11b Rao ML. N, Nand S, Murty VN. Asian J. Org. Chem. 2022; e202100604
    • 11c Vagh SS, Hou B.-J, Edukondalu A, Wang P.-C, Lin W. Org. Lett. 2021; 23: 842
    • 11d Noland WE, Kumar HV, Sharma A, Wei B, Girmachew S. Org. Lett. 2020; 22: 1801
    • 11e Tangella Y, Manasa KL, Nayak VL, Sathish M, Sridhar B, Alarifi A, Nagesh N, Kamal A. Org. Biomol. Chem. 2017; 15: 6837
    • 11f Miao C.-B, Liu R, Sun Y.-F, Sun X.-Q, Yang H.-T. Tetrahedron Lett. 2017; 58: 541
    • 11g Safaei-Ghomi J, Babaei P, Shahbazi-Alavi H, Pyne SG, Willis AC. J. Iran Chem. Soc. 2016; 13: 1439
    • 11h Khan AT, Lal M, Basha RS. Synthesis 2013; 45: 406
    • 11i Ye Y, Wang L, Fan R. J. Org. Chem. 2010; 75: 1760
    • 11j Wang Q.-F, Hou H, Hui L, Yan C.-G. J. Org. Chem. 2009; 74: 7403
    • 12a Yang J, Xie D, Zhou H, Chen S, Duan J, Huo C, Li Z. Adv. Synth. Catal. 2018; 360: 3471
    • 12b Yang J, Xie D, Zhou H, Chen S, Huo C, Li Z. Org. Chem. Front. 2018; 5: 1325
    • 13a Bagdi AK, Pattanayak P, Paul S, Mitra M, Choudhuri T, Sheikh AS. Adv. Synth. Catal. 2020; 362: 5601
    • 13b Monir K, Bagdi AK, Ghosh M, Hajra A. Org. Lett. 2014; 16: 4630
    • 13c Monir K, Bagdi AK, Mishra S, Majee A, Hajra A. Adv. Synth. Catal. 2014; 356: 1105
    • 13d Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1741
    • 14a Kibriya G, Bagdi AK, Hajra A. J. Org. Chem. 2018; 83: 10619
    • 14b Kibriya G, Bagdi AK, Hajra A. Org. Biomol. Chem. 2018; 16: 3473
    • 15a Zhu C, Zhumagazy S, Yue H, Rueping M. Chem. Commun. 2022; 58: 96
    • 15b Nagode SB, Kant R, Rastogi N. Org. Lett. 2019; 21: 6249
    • 15c He Y, Chen H, Li L, Huang J, Xiao T, Anand D, Zhou L. J. Photochem. Photobiol. A 2018; 355: 220