Synthesis 2023; 55(12): 1875-1885
DOI: 10.1055/a-2039-5229
paper

Photo-Induced Selective Difluoroalkylation of Unactivated Alkenes to Access Difluoroalkylated Indoles

Jinghui Tong
a   School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China
,
a   School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China
b   College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, Guangdong Province, P. R. China
,
Liang Liu
a   School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China
,
Xiao Yang
a   School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China
,
Jianhua Liao
a   School of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, P. R. China
b   College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, Guangdong Province, P. R. China
› Author Affiliations
The authors thank the National Natural Science Foundation of China (21961002, 22161004) for financial support. This work was also financially supported by Gannan Medical University (QD202019, QD202106, TD2021YX05-2).


Abstract

The difluoroalkylation of unactivated alkenes with ethyl iododifluoroacetate via visible light-induced process has been developed. This transformation provides selective access to difluoroalkylated indole derivatives in good yields depending on the choice of base, solvent, as well as the loading of ethyl iododifluoroacetate.

Supporting Information



Publication History

Received: 10 January 2023

Accepted after revision: 21 February 2023

Accepted Manuscript online:
21 February 2023

Article published online:
29 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
    • 1b Parsons AT, Senecal TD, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 2947
    • 1c He YT, Li LH, Yang YF, Zhou ZZ, Hua HL, Liu XY, Liang YM. Org. Lett. 2014; 16: 270
    • 1d Pair E, Monteiro N, Bouyssi D, Baudoin O. Angew. Chem. Int. Ed. 2013; 52: 5346
    • 2a Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 2b Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 2c Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 2d Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 2e Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2f Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2g Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2h Nebra N, Grushin VV. J. Am. Chem. Soc. 2014; 136: 16998
    • 2i Han G, Wang Q, Liu Y, Wang Q. Org. Lett. 2014; 16: 5914
    • 4a Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 4b Wen Z, Xu J, Wang Z, Qi H, Xu Q, Bai Z, Zhang Q, Bao K, Wu Y, Zhang W. Eur. J. Med. Chem. 2015; 90: 184
    • 4c Reddy BV. S, Venkata Ganesh A, Vani M, Ramalinga Murthy T, Kalivendi SV, Yadav JS. Bioorg. Med. Chem. Lett. 2014; 24: 4501
    • 5a O’Connor SE, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 5b Baran PS, Maimone TJ, Richter JM. Nature 2007; 446: 404
    • 5c Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 5d Richter JM, Whitefield BW, Maimone TJ, Lin DW, Castroviejo MP, Baran PS. J. Am. Chem. Soc. 2007; 129: 12857
    • 5e Tanaka M, Ubukata M, Matsuo T, Yasue K, Matsumoto K, Kajimoto Y, Ogo T, Inaba T. Org. Lett. 2007; 9: 3331
    • 5f Antos JM, McFarland JM, Iavarone AT, Francis MB. J. Am. Chem. Soc. 2009; 131: 6301
    • 5g Tucker JW, Narayanam JM, Krabbe SW, Stephenson CR. Org. Lett. 2010; 12: 368
    • 6a Jabor Gozzi G, Bouaziz Z, Winter E, Daflon-Yunes N, Aichele D, Nacereddine A, Marminon C, Valdameri G, Zeinyeh W, Bollacke A. Eur. J. Med. Chem. 2015; 58: 265
    • 6b Tomoo T, Nakatsuka T, Katayama T, Hayashi Y, Fujieda Y, Terakawa M, Nagahira K. Eur. J. Med. Chem. 2014; 57: 7244
    • 6c Xu Z, Hang Z, Chai L, Liu Z.-Q. Org. Lett. 2016; 18: 4662
    • 6d Qu Z, Tian T, Tan Y, Ji X, Deng G.-J, Huang H. Green Chem. 2022; 24: 7403
  • 7 Zhu H, Liu H, Feng X, Guo R, Chen X, Pan Z, Zhang L. Tetrahedron Lett. 2015; 56: 1703
  • 8 Wu X, Xiao G, Ding Y, Zhan Y, Zhao Y, Chen R, Loh T.-P. ACS Catal. 2020; 10: 14107
  • 9 Huang H, Yu M, Su X, Guo P, Zhao J, Zhou J, Li Y. J. Org. Chem. 2018; 83: 2425
  • 10 Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. J. Org. Chem. 2022; 87: 3788
  • 11 Cheng J, Zhang H, Lv J, Zheng J. Eur. J. Org. Chem. 2022; e202101342
    • 12a Prakash GK, Ganesh SK, Jones JP, Kulkarni A, Masood K, Swabeck JK, Olah GA. Angew. Chem. Int. Ed. 2012; 51: 12090
    • 12b Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2012; 134: 1494
    • 12c Zhou Q, Ruffoni A, Gianatassio R, Fujiwara Y, Sella E, Shabat D, Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
    • 12d Mehta VP, Greaney MF. Org. Lett. 2013; 15: 5036
    • 12e Feng Z. Angew. Chem. Int. Ed. 2014; 53: 1669
    • 13a Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. Am. Chem. Soc. 2011; 133: 4160
    • 13b Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. Am. Chem. Soc. 2012; 134: 8875
    • 13c Belhomme M.-C, Poisson T, Pannecoucke X. Org. Lett. 2013; 15: 3428
  • 14 Narayanam JM, Stephenson CR. Chem. Soc. Rev. 2011; 40: 102
  • 15 Rueda-Becerril M, Mahe O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin J.-F. J. Am. Chem. Soc. 2014; 136: 2637
    • 16a Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
    • 16b Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
    • 17a Lemir ID, Castro-Godoy WD, Heredia AA, Schmidt LC, Argüello JE. RSC Adv. 2019; 9: 22685
    • 17b Grenet E, Waser J. Org. Lett. 2018; 20: 1473
    • 17c Caramenti P, Nicolai S, Waser J. Chem. Eur. J. 2017; 23: 14702
    • 17d Schramm Y, Takeuchi M, Semba K, Nakao Y, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 12215
  • 18 Liao J, Ouyang L, Lai Y, Luo R. J. Org. Chem. 2020; 85: 5590