Planta Med 2023; 89(12): 1178-1189
DOI: 10.1055/a-2063-5481
Natural Product Chemistry and Analytical Studies
Original Papers

Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328

Jucélia Iantas
1   Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
2   Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
3   Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
,
Daiani Cristina Savi
4   Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
5   Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
,
Larissa V. Ponomareva
2   Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
3   Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
,
Jon S. Thorson
2   Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
3   Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
,
Jürgen Rohr
2   Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
,
Chirlei Glienke
1   Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
4   Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
,
2   Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
3   Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
› Author Affiliations
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 309971/2016-0
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 424738/2016-3
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico INCT Citrus 465440/2014-2
Supported by: Center of Biomedical Research Excellence (COBRE) in Pharmaceutical Research and Innovation CPRI, NIH P20 GM130456
Supported by: National Center for Advancing Translational Sciences UL1TR000117
Supported by: National Center for Advancing Translational Sciences UL1TR001998
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 001
Supported by: National Institutes of Health R01 CA243529
Supported by: National Institutes of Health R01 GM115261

Abstract

Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1) and R (2). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa. Cytochalasin H (6) (78.3%), phomoxanthone A (3) (70.2%), phomoxanthone B (4) (63.1%), and paecilin Q (1) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa, which are responsible for the disease dissemination in orchards. In addition, compounds 3 and 6 inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6) and one of the new compounds, paecilin Q (1), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease.

Supporting Information



Publication History

Received: 01 November 2022

Accepted after revision: 23 March 2023

Accepted Manuscript online:
28 March 2023

Article published online:
28 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hardoin PR, Van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 2015; 79: 293-320
  • 2 Noriler SA, Savi DC, Aluizio R, Palácio-Cortes AM, Possiede YM, Glienke C. Bioprospecting and structure of fungal endophyte communities found in the Brazilian biomes, Pantanal, and Cerrado. Front Microbiol 2018; 9: 1526
  • 3 Savi DC, Noriler SA, Ponomareva LV, Thorson JS, Rohr J, Glienke C, Shaaban KA. Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiol (Praha) 2020; 65: 381-392
  • 4 Savi DC, Shaaban KA, Gos FMWR, Ponomareva LV, Thorson JS, Glienke C, Rohr J. Phaeophleospora vochysiae Savi & Glienke sp. nov. isolated from Vochysia divergens found in the Pantanal, Brazil, produces bioactive secondary metabolites. Sci Rep 2018; 8: 1-10
  • 5 Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, Glienke C. Endophytes of Brazilian medicinal plants with activity against phytopathogens. Front Microbiol 2021; 12: 2454
  • 6 Rönsberg D, Debbab A, Mandi A, Vasylyeva V, Bohler P, Stork B, Engelke L, Hamacher A, Sawadogo R, Diederich M, Wray V, Lin W, Kassack MU, Janiak C, Scheu S, Wesselborg S, Kurtan T, Aly AH, Proksch JP. Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus Phomopsis longicolla . J Org Chem 2013; 78: 12409-12425
  • 7 de Deus Vidal jr. J, de Souza AP, Koch I. Impacts of landscape composition, marginality of distribution, soil fertility and climatic stability on the patterns of woody plant endemism in the Cerrado. Glob Ecol Biogeogr 2019; 28: 904-916
  • 8 Morey AT, Souza FC, Santos JP, Pereira CA, Cardoso JD, de Almeida RS, Costa MA, Mello JC, Nakamura CV, Pinge-Filho P, Yamauchi LM, Yamada-Ogatta SF. Antifungal Activity of Condensed Tannins from Stryphnodendron adstringens: Effect on Candida tropicalis Growth and Adhesion Properties. Curr Pharm Biotechnol 2016; 17: 365-375
  • 9 Baldivia DDS, Leite DF, Castro DTHD, Campos JF, Santos UPD, Paredes-Gamero EJ, Carollo CA, Silva DB, Souza KP, Dos Santos EL. Evaluation of in vitro antioxidant and anticancer properties of the aqueous extract from the stem bark of Stryphnodendron adstringens . Int J Mol Sci 2018; 19: 2432
  • 10 Rahmé GM. Prospecção química em Pseudofusicoccum stromaticum, um fungo Endofítico em Eugenia jambolana (Myrtaceae) [Dissertation]. UNESP: Universidade Estadual Paulista “Júlio de Mesquita Filho”; 2017
  • 11 Sobreira AC, Francisco das Chagas LP, Florêncio KG, Wilke DV, Staats CC, Streit RAS, Freire FCO, Pessoa ODL, Trindade-Silva AE, Canuto KM. Endophytic fungus Pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. RSC Adv 2018; 8: 35575-35586
  • 12 Sposito MB, Amorim L, Bassanezi RB, Yamamoto PT, Felippe MR, Czermainski ABC. Relative importance of inoculum sources of Guignardia citricarpa on the citrus black spot epidemic in Brazil. Crop Prot 2011; 30: 1546-1552
  • 13 Guarnaccia V, Gehrmann T, Silva-Junior GJ, Fourie PH, Haridas S, Vu D, Statafora J, Martin FM, Robert V, Grigoriev IV, Groenewald JZ, Crous PW. Phyllosticta citricarpa and sister species of global importance to Citrus. Mol Plant Pathol 2019; 20: 1619-1635
  • 14 Strano MC, Altieri G, Admane N, Genovese F, Di Renzo GC. Advance in citrus post-harvest management: Diseases, cold storage and quality evaluation. J Citrus Pathol 2017; 4: 139-159
  • 15 Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 2001; 64: 1015-1018
  • 16 Elsässer B, Krohn K, Flörke U, Root N, Aust HJ, Draeger S, Schulz B, Kurtán T. X‐ray structure determination, absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 2005; 2005: 4563-4570
  • 17 Ganapathy D, Reiner JR, Valdomir G, Senthilkumar S, Tietze LF. Enantioselective total synthesis and structure confirmation of the natural dimeric tetrahydroxanthenone dicerandrol C. Chem Eur J 2017; 23: 2299-2302
  • 18 Choi JN, Kim J, Ponnusamy K, Lim C, Kim JG, Muthaiya MJ, Lee CH. Identification of a new phomoxanthone antibiotic from Phomopsis longicolla and its antimicrobial correlation with other metabolites during fermentation. J Antibiot (Tokyo) 2013; 66: 231-233
  • 19 Ding B, Yuan J, Huang X, Wen W, Zhu X, Liu Y, Li H, Lu Y, He L, Tan H, She Z. New dimeric members of the phomoxanthone family: phomolactonexanthones A, B and deacetylphomoxanthone C isolated from the fungus Phomopsis sp. Mar Drugs 2013; 11: 4961-4972
  • 20 Frank M, Niemann H, Bohler P, Stork B, Wesselborg S, Lin W, Proksch P. Phomoxanthone A – from mangrove forests to anticancer therapy. Curr Med Chem 2015; 22: 3523-3532
  • 21 Yang R, Dong Q, Xu H, Gao X, Zhao Z, Qin J, Chen C, Luo D. Identification of phomoxanthone A and B as protein tyrosine phosphatase inhibitors. ACS Omega 2020; 40: 25927-25935
  • 22 Wagenaar MM, Clardy J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla Isolated from an endangered mint. J Nat Prod 2001; 64: 1006-1009
  • 23 Cao S, McMillin DW, Tamayo G, Delmore J, Mitsiades CS, Clardy J. Inhibition of tumor cells interacting with stromal cells by xanthones isolated from a Costa Rican Penicillium sp. J Nat Prod 2012; 75: 793-797
  • 24 Hsun-Shuo C. Chemical constituents of the endophytic fungus Phomopsis asparagi isolated from the plant Peperomia sui . Chem Nat Compd 2018; 54: 504-508
  • 25 Buchanan MS, Hashimoto T, Asakawa Y. Cytochalasins from a Daldinia sp. of fungus. Phytochemistry 1996; 41: 821-828
  • 26 Izawa Y, Hirose T, Shimizu T, Koyama K, Natori S. Six new 10-pheynl-[11]cytochalasans, cytochalasins N–S from Phomopsis sp. Tetrahedron 1989; 45: 2323-2335
  • 27 Abdissa N, Heydenreich M, Midiwo JO, Ndakala A, Majer Z, Neumann B, Stammler HG, Sewald N, Yenesew A. A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones. Phytochem Lett 2014; 9: 67-73
  • 28 Krick A, Kehraus S, Gerhäuser C, Klimo K, Nieger M, Maier A, Fiebig HH, Atodiresei I, Raabe G, Fleischhauer J, König GM. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis . J Nat Prod 2007; 70: 353-360
  • 29 Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, Lin W, Wu J, Proksch P. Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata . J Nat Prod 2009; 72: 662-665
  • 30 El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham 3rd JO, Wani MC, Peaerce CJ, Oberlies NH. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris . European J Org Chem 2015; 1: 109-121
  • 31 Kumla D, Shine Aung T, Buttachon S, Dethoup T, Gales L, Pereira JA, Inácio A, Costa PM, Lee M, Sekeroglu N, Silva AMS, Pinto MMM, Kijjoa A. A new dihydrochromone dimer and other secondary metabolites from cultures of the marine sponge-associated fungi Neosartorya fennelliae KUFA 0811 and Neosartorya tsunodae KUFC 9213. Mar Drugs 2017; 15: 375
  • 32 Mapook A, Macabeo APG, Thongbai B, Hyde KD, Stadler M. Polyketide-derived secondary metabolites from a Dothideomycetes fungus, Pseudopalawania siamensis gen. et sp. nov., (Muyocopronales) with antimicrobial and cytotoxic activities. Biomolecules 2020; 10: 569-592
  • 33 Sadorn K, Saepua S, Boonyuen N, Choowong W, Rachtawee P, Pittayakhajonwut P. Bioactive dimeric tetrahydroxanthones with 2, 2′- and 4, 4′-axial linkages from the entomopathogenic fungus Aschersonia confluens . J Nat Prod 2021; 84: 1149-1162
  • 34 Maha A, Rukachaisirikul V, Phongpaichit S, Poonsuwan W, Sakayaroj J. Dimeric chromanone, cyclohexenone and benzamide derivatives from the endophytic fungus Xylaria sp. PSU-H182. Tetrahedron 2016; 72: 2874-2879
  • 35 Zhang W, Krohn K, Zia U, Florke U, Pescitelli G, Di Bari L, Antus S, Kurtan T, Rheinheimer J, Draeger S, Schulz B. New mono- and dimeric members of the secalonic acid family: Blennolides A–G isolated from the fungus Blennoria sp. Chemistry 2008; 14: 4913-4923
  • 36 Wu G, Yu G, Kurtan T, Mandi A, Peng J, Mo X, Liu M, Li H, Sun X, Li J, Zhu T, Gu Q, Li D. Versixanthones A–F, cytotoxic xanthone-chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009. J Nat Prod 2015; 78: 2691-2698
  • 37 Valdomir G, Senthilkumar S, Ganapathy D, Zhang Y, Tietze LF. Enantioselective total synthesis of blennolide H and Phomopsis-H76 A and determination of their structure. Chemistry 2018; 24: 8760-8763
  • 38 Guo Z, She Z, Shao C, Wen L, Liu F, Zheng Z, Lin Y. 1H and 13C NMR signal assignments of paecilin A and B, two new chromone derivatives from mangrove endophytic fungus Paecilomyces sp. (tree 1–7). Magn Reson Chem 2007; 45: 777-780
  • 39 da Silva PH, Souza MPD, Bianco EA, da Silva SR, Soares LN, Costa EV, Silva FMA, Barison A, Forim MR, Cass QB, de Souza ADL, Koolen HHF, de Souza AQ. Antifungal polyketides and other compounds from amazonian endophytic Talaromyces fungi. J Braz Chem Soc 2018; 29: 622-630
  • 40 Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, Qian PY, Qi SH. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J Antibiot (Tokyo) 2013; 66: 219-223
  • 41 Wei P, Ai HL, Shi B, Ye K, Lv X, Pan X, Ma XJ, Xiao D, Li ZH, Lei X. Paecilins F–P, new dimeric chromanones isolated from the endophytic fungus Xylaria curta E10, and structural revision of paecilin A. Front Microbiol 2022; 13: 922444
  • 42 Gu G, Zhang T, Zhao J, Zhao W, Tang Y, Wang L, Cen S, Yu L, Zhang D. New dimeric chromanone derivatives from the mutant strains of Penicillium oxalicum and their bioactivities. RSC Adv 2022; 12: 22377-22384
  • 43 Carvalho CD, Ferreira-DʼSilva A, Wedge DE, Cantrell CL, Rosa LH. Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Can J Microbiol 2018; 64: 835-843
  • 44 Ma Y, Xiu Z, Zhou Z, Huang B, Liu J, Wu X, Li S, Tang X. Cytochalasin H inhibits angiogenesis via the suppression of HIF-1α protein accumulation and VEGF expression through PI3K/AKT/P70S6K and ERK1/2 signaling pathways in non-small cell lung cancer cells. J Cancer 2019; 10: 1997-2005
  • 45 Xu S, Ge HM, Song YC, Shen Y, Ding H, Tan RX. Cytotoxic cytochalasin metabolites of endophytic Endothia gyrosa . Chem Biodivers 2009; 6: 739-745
  • 46 Chapla VM, Zeraik ML, Ximenes VF, Zanardi LM, Lopes MN, Cavalheiro AJ, Silva DH, Young MC, Fonseca LM, Bolzani VS. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis . Molecules 2014; 19: 6597-6608
  • 47 Xiu Z, Liu J, Wu X, Li X, Li S, Wu X, Lv X, Ye H, Tang X. Cytochalasin H isolated from mangrove-derived endophytic fungus inhibits epithelial-mesenchymal transition and cancer stemness via YAP/TAZ signaling pathway in non-small cell lung cancer cells. J Cancer 2021; 12: 1169-1178
  • 48 Williams M, Eveleigh E, Forbes G, Lamb R, Roscoe L, Silk P. Evidence of a direct chemical plant defense role for maltol against spruce budworm. Entomol Exp Appl 2019; 12: 755-762
  • 49 Cheng C, Othman EM, Stopper H, Edrada-Ebel R, Hentschel U, Abdelmohsen UR. Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium Streptomyces sp. SBT348. Mar Drugs 2017; 15: 383