Synthesis 2023; 55(17): 2674-2682
DOI: 10.1055/a-2093-3233
paper

Acylation of Electron-Poor Alkenyl Sulfoxides: Diverse Transformations for the Synthesis of Polysubstituted Phenols and Functionalized Carbocycles

Xiaoyu Li
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 341014, P. R. of China
b   College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. of China
,
Qianyun Zhang
b   College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. of China
,
Yuanyuan Xie
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 341014, P. R. of China
c   Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, P. R. of China
,
Hongwei Zhou
b   College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. of China
› Author Affiliations
We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 22071082) and the Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (2020-0107-3-1).


Abstract

A protocol with available starting materials and mild conditions was developed for the synthesis of polysubstituted phenols and functionalized carbocycles via acylation of electron-poor alkenyl sulfoxides. The plausible mechanism was investigated.

Supporting Information



Publication History

Received: 23 February 2023

Accepted after revision: 15 May 2023

Accepted Manuscript online:
15 May 2023

Article published online:
12 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2016; 55: 9842
    • 1b Shioiri T, Ishihara K, Matsugi M. Org. Chem. Front. 2022; 9: 3360
    • 1c Liu J, Kragh RR, Kamounah FS, Lee JW. Tetrahedron 2020; 76: 131633
    • 1d Aukland MH, Šiaučiulis M, West A, Perry GJ, Procter DJ. Nat. Catal. 2020; 3: 163
    • 1e Betkekar VV, Suzuki K, Ohmori K. Org. Biomol. Chem. 2022; 20: 7419
    • 1f Qi P, Sun F, Chen N, Du H. J. Org. Chem. 2022; 87: 1133
    • 1g Lin Z, Xu X, Zhao S, Yang X, Guo J, Zhang Q, He Y. Nat. Commun. 2018; 9: 3445
    • 2a Wright SE, Clarkson A, Korns JM, Haljun E, Lofving L, Ourgessa M, Getzler YD. Y. L. Green Chem. Lett. Rev. 2022; 15: 683
    • 2b Zhang X, Xu J. Org. Chem. Front. 2022; 9: 6708
    • 2c De A, Majee A. J. Heterocycl. Chem. 2022; 59: 422
    • 2d Garzón-Posse F, Prunet J, Gamba-Sánchez D. Org. Biomol. Chem. 2020; 18: 2702
    • 2e Guo LD, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Nat. Commun. 2020; 11: 3538
    • 2f Cai J, Hu J, Qin C, Li L, Shen D, Tian G, Yin J. Angew. Chem. Int. Ed. 2020; 59: 20529
    • 2g Tanabe S, Kobayashi Y. Org. Biomol. Chem. 2019; 17: 2393
    • 2h Mao H, Wang PM, Xu J. Tetrahedron 2021; 81: 131913
    • 3a Lu LQ, Li TR, Wang Q, Xiao WJ. Chem. Soc. Rev. 2017; 46: 4135
    • 3b Yan S, Rao J, Zhou CY. Org. Lett. 2020; 22: 9091
    • 3c Empel C, Hock KJ, Koenigs RM. Chem. Commun. 2019; 55: 338
    • 3d Yang Z, Guo Y, Koenigs RM. Chem. Commun. 2019; 55: 8410
    • 3e Neuhaus JD, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
    • 3f Cheng QQ, Massey LA, Willett BS, Deng Y, Arman H, Doyle MP. Angew. Chem. Int. Ed. 2018; 57: 10343
    • 3g Ahire MM, Thoke MB, Mhaske SB. Org. Lett. 2018; 20: 848
    • 3h Sharma A, Pandey SK. Chem. Commun. 2023; 59: 1509
    • 3i Munaretto LS, Dos Santos CY, Gallo RD, Okada CY. Jr, Deflon VM, Jurberg ID. Org. Lett. 2021; 23: 9292
    • 3j Wang J, Li QY, Wang SS, Wu XY, Li X, Liu PN. Org. Lett. 2023; 25: 703
    • 3k Reddy AC. S, Anbarasan P. Org. Lett. 2019; 21: 9965
    • 4a Takumi M, Sakaue H, Shibasaki D, Nagaki A. Chem. Commun. 2022; 58: 8344
    • 4b Zou LH, Liu B, Wang C, Shao Z, Zhou J, Shao A, Wen J. Org. Chem. Front. 2022; 9: 3231
    • 4c He Y, Huang Z, Ma J, Huang F, Lin J, Wang H, Yu Z. Org. Lett. 2021; 23: 6110
    • 4d Gao P, Zhang Q, Chen F. Org. Lett. 2022; 24: 7769
    • 4e Dong J, Xu J. Synthesis 2018; 50: 2407
    • 4f Meng H, Liu M.-S, Shu W. Chem. Sci. 2022; 13: 13690
    • 5a Alexandre C, Rouessac F, Tabti B. Tetrahedron Lett. 1985; 26: 5453
    • 5b Aranda MT, Aversa MC, Barattucci A, Bonaccorsi P, Carreño MC, Cid MB, Ruano JL. G. Tetrahedron: Asymmetry 2000; 11: 1217
    • 5c Miyashita K, Nishimoto M, Ishino T, Obika S, Imanishi T. Chem. Pharm. Bull. 1995; 43: 711
    • 5d Chen LJ, Liu JT. J. Fluorine Chem. 2009; 130: 329
    • 5e Arroyo Y, Carreño MC, Ruano JL. G, Amo JF. R, Santos M, Tejedor MA. S. Tetrahedron: Asymmetry 2000; 11: 1183
    • 5f Miura M, Toriyama M, Motohashi S. Tetrahedron: Asymmetry 2007; 18: 1269
    • 5g Manchala N, Law HY, Kerr DJ, Volpe R, Lepage RJ, White JM, Flynn BL. J. Org. Chem. 2017; 82: 6511
    • 6a Zhu W, Zhang Q, Bao X, Lin Y, Xu G, Zhou H. Org. Biomol. Chem. 2022; 20: 3955
    • 6b Bao X, Yao J, Zhou H, Xu G. Org. Lett. 2017; 19: 5780
    • 6c Bao X, Xu G, Yao J, Zhou H. Org. Chem. Front. 2018; 5: 1019
    • 6d Chen D, Xing G, Yao J, Zhou H. Org. Chem. Front. 2017; 4: 1042
    • 6e Chen D, Zhang L, Yao J, Zhou H. J. Org. Chem. 2017; 82: 6202
    • 6f Zhou H, Xing Y, Liu L, Hong J. Adv. Synth. Catal. 2011; 353: 3146
    • 6g Zhou H, Xing Y, Yao J, Lu Y. J. Org. Chem. 2011; 76: 4582
    • 6h Zhou H, Xie Y, Ren L, Su R. Org. Lett. 2010; 12: 356
    • 6i Zhou H, Zhu D, Xie Y, Huang H, Wang K. J. Org. Chem. 2010; 75: 2706
    • 6j Zhou H, Xing Y, Yao J, Chen J. Org. Lett. 2010; 12: 3674
    • 6k Zhou H, Zhu D, Xing Y, Huang H. Adv. Synth. Catal. 2010; 352: 2127
    • 7a Trost BM, Masters JT, Le Vaillant F, Lumb J.-P. J. Org. Chem. 2016; 81: 10023
    • 7b Fringuelli F, Pizzo F, Vaccaro L. J. Org. Chem. 2004; 69: 2315
    • 7c Amat M, Arioli F, Pérez M, Molins E, Bosch J. Org. Lett. 2013; 15: 2470
  • 8 CCDC 2241525 (4f) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 9a Liu Y, Kim J, Seo H, Park S, Chae J. Adv. Synth. Catal. 2015; 357: 2205
    • 9b Chen Y, Xiao F, Chen H, Liu S, Deng GJ. RSC Adv. 2014; 4: 44621
    • 9c Liao Y, Jiang P, Chen S, Qi H, Deng GJ. Green Chem. 2013; 15: 3302
    • 9d Rostami A, Khakyzadeh V, Zolfigol MA, Rostami A. Mol. Catal. 2018; 452: 260