Planta Med 2023; 89(12): 1110-1124
DOI: 10.1055/a-2099-4932
Biological and Pharmacological Activity
Reviews

Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis

Hua Gao
1   College of Chemical Engineering, Nanjing Forestry University, Nanjing, Peopleʼs Republic of China
,
Luning Zhou
2   Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, Peopleʼs Republic of China
,
Peng Zhang
3   Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
,
Ying Wang
1   College of Chemical Engineering, Nanjing Forestry University, Nanjing, Peopleʼs Republic of China
,
Xuan Qian
1   College of Chemical Engineering, Nanjing Forestry University, Nanjing, Peopleʼs Republic of China
,
Yujia Liu
1   College of Chemical Engineering, Nanjing Forestry University, Nanjing, Peopleʼs Republic of China
,
Guangwei Wu
1   College of Chemical Engineering, Nanjing Forestry University, Nanjing, Peopleʼs Republic of China
› Author Affiliations
This work was financially supported by the Start-up Research Fund from the Nanjing Forestry University, China (163030231).

Abstract

Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include “orsellinic acid”, “sesquiterpene”, “ascochlorin”, “ascofuranone”, and “Ascochyta viciae”, which are combined with the structures of “ascochlorin” and “ascofuranone” drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.

Supporting Information



Publication History

Received: 10 February 2023

Accepted after revision: 24 May 2023

Accepted Manuscript online:
24 May 2023

Article published online:
23 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Geris R, Simpson TJ. Meroterpenoids produced by fungi. Nat Prod Rep 2009; 26: 1063-1094
  • 2 Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep 2016; 33: 26-53
  • 3 Zhang X, Wang TT, Xu QL, Xiong Y, Zhang L, Han H, Xu K, Guo WJ, Xu Q, Tan RX, Ge HM. Genome mining and comparative biosynthesis of meroterpenoids from two phylogenetically distinct fungi. Angew Chem Int Ed Engl 2018; 57: 8184-8188
  • 4 Tamura G, Suzuki S, Takatsuki A, Ando K, Arima K. Ascochlorin, a new antibiotic, found by the paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. (Studies on antiviral and antitumor antibiotics. I). J Antibiot 1968; 21: 539-544
  • 5 Hijikawa Y, Matsuzaki M, Suzuki S, Inaoka DK, Tatsumi R, Kido Y, Kita K. Re-identification of the ascofuranone-producing fungus Ascochyta viciae as Acremonium sclerotigenum . J Antibiot 2016; 70: 304-307
  • 6 Chai EZP, Shanmugam MK, Arfuso F, Dharmarajan A, Wang C, Kumar AP, Samy RP, Lim LH, Wang L, Goh BC, Ahn KS, Hui KM, Sethi G. Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol Ther 2016; 162: 86-97
  • 7 Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202: 112502
  • 8 Petrovic MM, Roschger C, Chaudary S, Zierer A, Mladenovic M, Jakovljevic K, Markovic V, Botta B, Joksovic MD. Potent human dihydroorotate dehydrogenase inhibitory activity of new quinoline-4-carboxylic acids derived from phenolic aldehydes: Synthesis, cytotoxicity, lipophilicity and molecular docking studies. Bioorg Chem 2020; 105: 104373
  • 9 Petrovic MM, Roschger C, Chaudary S, Zierer A, Mladenovic M, Markovic V, Trifunovic S, Joksovic MD. Low cytotoxic quinoline-4-carboxylic acids derived from vanillin precursors as potential human dihydroorotate dehydrogenase inhibitors. Bioorg Med Chem Lett 2021; 46: 128194
  • 10 Barra L, Abe I. Chemistry of fungal meroterpenoid cyclases. Nat Prod Rep 2021; 38: 566-585
  • 11 Shiomi K. Antiparasitic antibiotics from Japan. Parasitol Int 2021; 82: 102298
  • 12 Li C, Matsuda Y, Gao H, Hu D, Yao XS, Abe I. Biosynthesis of LL-Z1272β: Discovery of a new member of NRPS-like enzymes for aryl-aldehyde formation. Chembiochem 2016; 17: 904-907
  • 13 Araki Y, Awakawa T, Matsuzaki M, Cho R, Matsuda Y, Hoshino S, Shinohara Y, Yamamoto M, Kido Y, Inaoka DK, Nagamune K, Ito K, Abe I, Kita K. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum . Proc Natl Acad Sci U S A 2019; 116: 8269-8274
  • 14 Ellestad GA, Evans jr. RH, Kunstmann MP. Some new terpenoid metabolites from an unidentified Fusarium species. Tetrahedron 1969; 25: 1323-1334
  • 15 Hayakawa S, Minato H, Katagiri K. The ilicicolins from cylindrocladium ilicicola . J Antibiot 1971; 24: 653-654
  • 16 Minato H, Katayama T, Hayakawa S, Katagiri K. Identification of ilicicolins with ascochlorin and LL-Z 1272. J Antibiot 1972; 25: 315-316
  • 17 Liu X, Chen X, Qian F, Zhu T, Xu J, Li Y, Zhang L, Jiao B. Chlorinated phenolic sesquiterpenoids from the Arctic fungus Nectria sp. B-13. Biochem Syst Ecol 2015; 59: 22-25
  • 18 Luo X, Cai G, Guo Y, Gao C, Huang W, Zhang Z, Lu H, Liu K, Chen J, Xiong X, Lei J, Zhou X, Wang J, Liu Y. Exploring marine-derived ascochlorins as novel human dihydroorotate dehydrogenase inhibitors for treatment of triple-negative breast cancer. J Med Chem 2021; 64: 13918-13932
  • 19 Sorres J, Sabri A, Brel O, Stien D, Eparvier V. Ilicicolinic acids and ilicicolinal derivatives from the fungus Neonectria discophora SNB-CN63 isolated from the nest of the termite Nasutitermes corniger found in French Guiana show antimicrobial activity. Phytochemistry 2018; 151: 69-77
  • 20 Takamatsu K, Rho MC, Masuma R, Hayashi M, Komiyama K, Tanaka H, Omura S. A novel testostone 5α-reductase inhibitor, 8′,9′-dehydroascochlorin produced by verticillium sp FO-2787. Chem Pharm Bull 1994; 42: 953-956
  • 21 Aldridge DC, Borrow A, Foster RG, Large MS, Spencer H, Turner WB. Metabolites of Nectria coccinea . J Chem Soc Perkin 1 1972; 17: 2136-2141
  • 22 Kawaguchi M, Fukuda T, Uchida R, Nonaka K, Masuma R, Tomoda H. A new ascochlorin derivative from Cylindrocarpon sp. FKI-4602. J Antibiot 2013; 66: 23-29
  • 23 Wu B, Oesker V, Wiese J, Malien S, Schmaljohann R, Imhoff JF. Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar Drugs 2014; 12: 1924-1938
  • 24 Guo R, Zhang Y, Duan D, Fu Q, Zhang X, Yu X, Wang S, Bao B, Wu W. Fibrinolytic evaluation of compounds isolated from a marine fungus Stachybotrys longispora FG216. Chin J Chem 2016; 34: 1194-1198
  • 25 Liu X. Researches on structure elucidation and biological activities investigation of secondary metabolites of two polar fungi [PhD Thesis]. Shanghai: The Second Military Medical University; 2016
  • 26 Guo L, Luo X, Yang P, Zhang Y, Huang J, Wang H, Guo YF, Huang W, Chen Z, Wang S, Wang J, Lei JP, Xiang S, Liu Y. Ilicicolin A exerts antitumor effect in castration-resistant prostate cancer via suppressing EZH2 signaling pathway. Front Pharmacol 2021; 12: 723729
  • 27 Otoguro K, Ishiyama A, Namatame M, Nishihara A, Furusawa T, Masuma R, Shiomi K, Takahashi Y, Yamada H, Omura S. Selective and potent in vitro antitrypanosomal activities of ten microbial metabolites. J Antibiot 2008; 61: 372-378
  • 28 Aggarwal S, Thareja S, Verma A, Bhardwaj TR, Kumar M. An overview on 5α-reductase inhibitors. Steroids 2010; 75: 109-153
  • 29 Wilson FS, Busato J. Use of 5α-reductase inhibitor and delay in prostate cancer diagnosis and treatment. Int Braz J Urol 2020; 46: 456-458
  • 30 Kim DG, Kwon HJ, Lim JH, Kim JH, Lee KP. Quisqualis indica extract ameliorates low urinary tract symptoms in testosterone propionate-induced benign prostatic hyperplasia rats. Lab Anim Res 2020; 36: 26
  • 31 Traish AM. Health risks associated with long-term finasteride and dutasteride use: Itʼs time to sound the alarm. World J Mens Health 2020; 38: 323-337
  • 32 Hussain H, Drogies KH, Al-Harrasi A, Hassan Z, Shah A, Rana UA, Green IR, Draeger S, Schulz B, Krohn K. Antimicrobial constituents from endophytic fungus Fusarium sp. Asian Pac J Trop Dis 2015; 5: 186-189
  • 33 Hosono K, Ogihara J, Ohdake T, Masuda S. LL-Z1272α epoxide, a precursor of ascochlorin produced by a mutant of Ascochyta viciae . J Antibiot 2009; 62: 571-574
  • 34 Isaka M, Yangchum A, Supothina S, Laksanacharoen P, Luangsa-Ard J, Hywel-Jones NL. Ascochlorin derivatives from the leafhopper pathogenic fungus Microcera sp. BCC 17074. J Antibiot 2015; 68: 47-51
  • 35 Kuroda M, Takatsu T, Takahashi H, Hosoya T, Furuya K. New compound ilicicolinic acid A or B. Japanese Patent 05255184, 1993
  • 36 Nirma C, Eparvier V, Stien D. Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest. J Nat Prod 2015; 78: 159-162
  • 37 Zhang P, Bao B, Dang HT, Hong J, Lee HJ, Yoo ES, Bae KS, Jung JH. Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 2009; 72: 270-275
  • 38 Tian J, Lai D, Zhou L. Secondary metabolites from Acremonium fungi: Diverse structures and bioactivities. Mini-Rev. Med Chem 2017; 17: 603-632
  • 39 Singh SB, Ball RG, Bills GF, Cascales C, Gibbs JB, Goetz MA, Hoogsteen K, Jenkins RG, Liesch JM, Lingham RB, Silverman KC, Zink DL. Chemistry and biology of cylindrols: Novel inhibitors of ras farnesyl-protein transferase from Cylindrocarpon lucidum . J Org Chem 1996; 61: 7727-7737
  • 40 Suzuki T, Yoshida S, Koseki T, Aboshi T, Murayama T, Supratman U, Shiono Y. New metabolites produced by Cylindrocarpon sp. SY-39 from a driftwood. Chem Biodivers 2018; 15: e1700493
  • 41 Shen W, Ren X, Zhu J, Xu Y, Lin J, Li Y, Zhao F, Zheng H, Li R, Cui X, Zhang X, Lu X, Zheng Z. Discovery of a new structural class of competitive hDHODH inhibitors with in vitro and in vivo anti-inflammatory, immunosuppressive effects. Eur J Pharmacol 2016; 791: 205-212
  • 42 Sasaki H, Okutol T, Bosokau T, Nawata Y, Ando K. Ascofuranone, a new antibiotic from Ascochyta viciae . Tetrahedron Lett 1972; 13: 2541-2544
  • 43 Bal-Tembe S, Kundu S, Roy K, Hiremath CP, Gole G, de Souza EP, Vijaya Kumar EKS, Gates DA, Pillmoor JB. Activity of the ilicicolins against plant pathogenic fungi. Pestic Sci 1999; 55: 645-647
  • 44 Seephonkai P, Isaka M, Kittakoop P, Boonudomlap U, Thebtaranonth Y. A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. J Antibiot 2004; 57: 10-16
  • 45 Wanigesekaraa WMAP, Wijeratne EMK, Arnold AE, Gunatilaka AAL. 10′-deoxy-10α-hydroxyascochlorin, a new cell migration inhibitor and other metabolites from Acremonium sp., a fungal endophyte in Ephedra trifurca . Nat Prod Commun 2013; 5: 601-604
  • 46 Mioso R, Marante FJT, de Laguna IHB. The chemical diversity of the ascomycete fungus Paecilomyces variotii . Appl Biochem Biotechnol 2015; 177: 781-791
  • 47 Hao X, Li S, Ni J, Wang G, Li F, Li Q, Chen S, Shu J, Gan M. Acremopeptaibols A–F, 16-residue peptaibols from the sponge-derived Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa . J Nat Prod 2021; 84: 2990-3000
  • 48 Sasaki H, Hosokawa T, Sawada M, Ando K. Isolation and structure of ascofuranone and ascofranol, antibiotics with hypolipidemic activity. J Antibiot 1973; 26: 676-680
  • 49 Nawata Y, Ando K, Tamura G, Arima K, Iitaka Y. The molecular structure of ascochlorin. J Antibiot 1969; 22: 511-512
  • 50 Magae J, Nagai K, Nado K, Tamura G. Differentiation of mouse and human myeloid leukemia cells induced by an antitumor antibiotic, ascofuranone. Agric Biol Chem 1988; 12: 3143-3147
  • 51 Hosokawa T, Suzuki K, Okutomi T, Sawada M, Ando K. Effect of ascofuranone on serum lipids of rats fed a cholesterol rich diet. Jpn J Pharmacol 1975; 25: 35-39
  • 52 Magae J, Nagai K, Ando K, Yamasaki M, Tamura G. Effects of an antitumor agent, ascofuranone, on the macromolecular syntheses of intact cells. J Antibiot 1983; 36: 892-899
  • 53 Minagawa N, Yabu Y, Kita K, Nagai K, Ohta N, Meguro K, Sakajo S, Yoshimoto A. An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei . Mol Biochem Parasitol 1997; 84: 271-280
  • 54 Fukai Y, Amino H, Hirawake H, Yabu Y, Ohta N, Minagawa N, Sakajo S, Yoshimoto A, Nagai K, Takamiya S, Kojima S, Kita K. Functional expression of the ascofuranone-sensitive Trypanosoma brucei brucei alternative oxidase in the cytoplasmic membrane of Escherichia coli . Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 1999; 124: 141-148
  • 55 Sawada M, Hosokawa T, Okutomi T, Ando K. Hypolipidemic property of ascofuranone. J Antibiot 1973; 26: 681-686
  • 56 Magae J, Nagai K, Suzuki S, Yamasaki M, Ando K, Tamura G. Macrophage-specific effect on lipid metabolism by an antibiotic, ascofuranone. J Antibiot 1987; 40: 202-208
  • 57 Yabu Y, Minagawa N, Kita K, Nagai K, Honma M, Sakajo S, Koide T, Ohta N, Yoshimoto A. Oral and intraperitoneal treatment of Trypanosoma brucei brucei with a combination of ascofuranone and glycerol in mice. Parasitol Int 1998; 47: 131-137
  • 58 Saimoto H, Kido Y, Haga Y, Sakamoto K, Kita K. Pharmacophore identification of ascofuranone, potent inhibitor of cyanide-insensitive alternative oxidase of Trypanosoma brucei . J Biochem 2013; 153: 267-273
  • 59 Kang JH, Park KK, Lee IS, Magae JJ, Ando K, Kim CH, Chang YC. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell Line by 2-D gel electrophoresis and MALDI-TOF MS. J Proteome Res 2006; 5: 2620-2631
  • 60 Magae J, Hotta M, Nagai K, Suzuli S, Ando K, Yamasaki M, Tamura G. Activation of natural cytotoxic activity and concomitant reduction of triglyceride content of murine spleen, treated with an antitumor antibiotic, ascofuranone. J Antibiot 1986; 39: 676-681
  • 61 Magae J, Hayasaki J, Matsuda Y, Hotta M, Hosokawa T, Suzuki S, Nagai K, Ando K, Tamura G. Antitumor and antimetastatic activity of an antibiotic, ascofuranone, and activation of phagocytes. J Antibiot 1988; 41: 959-965
  • 62 Magae J, Hosokawa T, Ando K, Nagai K, Tamura G. Antitumor protective property of an isoprenoid antibiotic, ascofuranone. J Antibiot 1982; 35: 1547-1552
  • 63 Nihei C, Fukai Y, Kita K. Trypanosome alternative oxidase as a target of chemotherapy. Biochim Biophys Acta 2002; 1587: 234-239
  • 64 Hosokawa T, Okutomi T, Sawada M, Ando K, Tamura G. Unusual concentration of urine and prevention of polydipsia by fungal prenylphenols in DOCA hypertensive rats. Eur. J Pharmacol 1981; 69: 429-438
  • 65 Fukai Y, Nihei C, Kawai K, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K. Overproduction of highly active trypanosome alternative oxidase in Escherichia coli heme-deficient mutant. Parasitol Int 2003; 52: 237-241
  • 66 Nihei C, Fukai Y, Kawai K, Osanai A, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K. Purification of active recombinant trypanosome alternative oxidase. FEBS Lett 2003; 538: 35-40
  • 67 Yabu Y, Yoshida A, Suzuki T, Nihei C, Kawai K, Minagawa N, Hosokawa T, Nagai K, Kita K, Ohta N. The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitol Int 2003; 52: 155-164
  • 68 Suzuki T, Hashimoto T, Yabu Y, Kido Y, Sakamoto K, Nihei C, Hato M, Suzuki S, Amano Y, Nagai K, Hosokawa T, Minagawa N, Ohta N, Kita K. Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: Phylogenetic and therapeutic implications. Biochem Biophys Res Commun 2004; 313: 1044-1052
  • 69 Suzuki T, Nihei C, Yabu Y, Hashimoto T, Suzuki M, Yoshida A, Nagai K, Hosokawa T, Minagawa N, Suzuki S, Kita K, Ohta N. Molecular cloning and characterization of Trypanosoma vivax alternative oxidase (AOX) gene, a target of the trypanocide ascofuranone. Parasitol Int 2004; 53: 235-245
  • 70 Yabu Y, Suzuki T, Nihei C, Minagawa N, Hosokawa T, Nagai K, Kita K, Ohta N. Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. Parasitol Int 2006; 55: 39-43
  • 71 Cho HJ, Kang JH, Kwak JY, Lee TS, Lee IS, Park NG, Nakajima H, Magae J, Chang YC. Ascofuranone suppresses PMA-mediated matrix metalloproteinase-9 gene activation through the Ras/Raf/MEK/ERK- and Ap1-dependent mechanisms. Carcinogenesis 2007; 28: 1104-1110
  • 72 Cho HJ, Kang JH, Kim T, Park KK, Kim CH, Lee IS, Min KS, Magae J, Nakajima H, Bae YS, Chang YC. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J Cell Biochem 2009; 107: 335-344
  • 73 Kang JH, Cho HJ, Lee IS, Kim M, Lee IK, Chang YC. Comparative proteome analysis of TGF-beta1-induced fibrosis processes in normal rat kidney interstitial fibroblast cells in response to ascofuranone. Proteomics 2009; 9: 4445-4456
  • 74 Hwang SL, Chang HW, Lee IK, Yang BK, Magae J, Chang YC. Ascofuranone prevents ER stress-induced insulin resistance via activation of AMP-activated protein kinase in L6 myotube cells. Biochem Biophys Res Commun 2010; 396: 967-972
  • 75 Jeong JH, Kang SS, Park KK, Chang HW, Magae J, Chang YC. p 53-independent induction of G1 arrest and p 21WAF1/CIP1 expression by ascofuranone, an isoprenoid antibiotic, through downregulation of c-Myc. Mol Cancer Ther 2010; 9: 2102-2113
  • 76 Chang YC, Cho HJ. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line. Biochem Biophys Res Commun 2012; 422: 423-428
  • 77 Jeong YJ, Cho HJ, Magae J, Lee IK, Park KG, Chang YC. Ascofuranone suppresses EGF-induced HIF-1alpha protein synthesis by inhibition of the Akt/mTOR/p 70S6K pathway in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 2013; 273: 542-550
  • 78 Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 2013; 110: 4580-4585
  • 79 Minagawa N, Meguro K, Sakajo S, Yoshimoto A. Effects of ascofuranone on the mitochondria isolated from Hansenula anomala . Biosci Biotechnol Biochem 2014; 58: 1334-1335
  • 80 Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 2015; 93: 1-10
  • 81 Jager SN, Porta EOJ, Labadie GR. Tuning the Lewis acid phenol ortho-prenylation as a molecular diversity tool. Mol Divers (Basel) 2016; 20: 407-419
  • 82 Matsuzaki M, Tatsumi R, Kita K. Protoplast generation from the ascofuranone-producing fungus Acremonium sclerotigenum . Cytologia (Tokyo) 2017; 82: 317-320
  • 83 Park JY, Chung TW, Jeong YJ, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Lee YC, Ha KT, Magae J, Chang YC, Kim CH. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-alpha, IL-6 and IL-1beta in RAW 264.7 macrophages. PLoS One 2017; 12: e0171322
  • 84 Miyazaki Y, Inaoka DK, Shiba T, Saimoto H, Sakura T, Amalia E, Kido Y, Sakai C, Nakamura M, Moore AL, Harada S, Kita K. Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions. Front Pharmacol 2018; 9: 997
  • 85 West R, Cunningham T, Pennicott LE, Rao SPS, Ward SE. Toward more drug like inhibitors of trypanosome alternative oxidase. ACS Infect Dis 2018; 4: 592-604
  • 86 Kim W, Chen W. Phytotoxic metabolites produced by legume-associated Ascochyta and its related genera in the dothideomycetes. Toxins (Basel) 2019; 11: 627
  • 87 Qi Q, Lu X, Zheng Z, Li Y, Fan Y, Zhu J, Ren X, Cui X, Shi Y, Li S, Zhang H, Zhao B. F01WB-1315A and B, two dihydroorotate dehydrogenase inhibitors from microbial metabolites. Acta Microbiol Sin 2009; 49: 485-491
  • 88 Kita K, Nihei C, Tomitsuka E. Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. Curr Med Chem 2003; 10: 2535-2548
  • 89 Tsuda A, Witola WH, Ohashi K, Onuma M. Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense . Parasitol Int 2005; 54: 243-251
  • 90 de Souza W, Attias M, Rodrigues JC. Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41: 2069-2080
  • 91 Kido Y, Shiba T, Inaoka DK, Sakamoto K, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Moore A, Harada S, Kita K. Crystallization and preliminary crystallographic analysis of cyanide-insensitive alternative oxidase from Trypanosoma brucei brucei . Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66: 275-278
  • 92 Fidalgo LM, Gille L. Mitochondria and trypanosomatids: targets and drugs. Pharm Res 2011; 28: 2758-2770
  • 93 Young L, Rosell-Hidalgo A, Inaoka DK, Xu F, Albury M, May B, Kita K, Moore AL. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase. Biochim Biophys Acta 2020; 1861: 148247
  • 94 Awakawa T, Abe I. Reconstitution of polyketide-derived meroterpenoid biosynthetic pathway in Aspergillus oryzae . J Fungi (Basel) 2021; 7: 486-496
  • 95 Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T, Yabu Y, Saimoto H, Yamakura F, Ohmori D, Moore A, Harada S, Kita K. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei . Biochim Biophys Acta 2010; 1797: 443-450
  • 96 Xu F, Copsey AC, Young L, Barsottini MRO, Albury MS, Moore AL. Comparison of the kinetic parameters of alternative oxidases from Trypanosoma brucei and Arabidopsis thaliana-A tale of two cavities. Front Plant Sci 2021; 12: 744218
  • 97 Fukai Y, Nihei C, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K. Strain-specific difference in amino acid sequences of trypanosome alternative oxidase. Parasitol Int 2002; 51: 195-199
  • 98 Shiomi K, Omura S. Antiparasitic agents produced by microorganisms. Proc Jpn Acad Ser B 2004; 80: 245-258
  • 99 Kita K, Shiomi K, Omura S. Advances in drug discovery and biochemical studies. Trends Parasitol 2007; 23: 223-229
  • 100 Ohashi-Suzuki M, Yabu Y, Ohshima S, Nakamura K, Kido Y, Sakamoto K, Kita K, Ohta N, Suzuki T. Differential kinetic activities of glycerol kinase among African trypanosome species phylogenetic and therapeutic implications. J Vet Med Sci 2011; 73: 615-621
  • 101 Jeacock L, Baker N, Wiedemar N, Maser P, Horn D. Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathog 2017; 13: e1006307
  • 102 Menzies SK, Tulloch LB, Florence GJ, Smith TK. The trypanosome alternative oxidase: a potential drug target?. Parasitology 2018; 145: 175-183
  • 103 Ebiloma GU, Balogun EO, Cueto-Diaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39: 1-50
  • 104 Shiba T, Inaoka DK, Takahashi G, Tsuge C, Kido Y, Young L, Ueda S, Balogun EO, Nara T, Honma T, Tanaka A, Inoue M, Saimoto H, Harada S, Moore AL, Kita K. Insights into the ubiquinol/dioxygen binding and proton relay pathways of the alternative oxidase. Biochim Biophys Acta 2019; 1860: 375-382
  • 105 Balogun EO, Inaoka DK, Shiba T, Tsuge C, May B, Sato T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Watanabe YI, Moore AL, Harada S, Kita K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei . FASEB J 2019; 33: 13002-13013
  • 106 Williams BAP, Elliot C, Burri L, Kido Y, Kita K, Moore AL, Keeling PJ. A broad distribution of the alternative oxidase in microsporidian parasites. PLoS Pathog 2010; 6: e1000761
  • 107 Elliott C, Young L, May B, Shearman J, Albury MS, Kido Y, Kita K, Moore AL. Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum . Mitochondrion 2014; 19 Pt B: 261-268
  • 108 Young L, May B, Pendlebury-Watt A, Shearman J, Elliott C, Albury MS, Shiba T, Inaoka DK, Harada S, Kita K, Moore AL. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis. Biochim Biophys Acta 2014; 1837: 1219-1225
  • 109 Berry EA, Huang LS, Lee DW, Daldal F, Nagai K, Minagawa N. Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc 1 complex. Biochim Biophys Acta 2010; 1797: 360-370
  • 110 Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: A rational drug discovery approach. J Comput Aided Mol Des 2021; 35: 245-260
  • 111 Minagawa N, Sakai S, Katsuragi R, Ando M. Effects of ascochlorin on the yeast Candida albicans . Biochim Biophys Acta 2012; 1817: S91
  • 112 Gutiérrez M, Theoduloz C, Rodríguez J, Lolas M, Schmeda-Hirschmann G. Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile. J Agric Food Chem 2005; 53: 7701-7708
  • 113 Coleman JJ, Ghosh S, Okoli I, Mylonakis E. Antifungal activity of microbial secondary metabolites. PLoS One 2011; 6: e25321
  • 114 Subko K, Kildgaard S, Vicente F, Reyes F, Genilloud O, Larsen TO. Bioactive ascochlorin analogues from the marine-derived fungus Stilbella fimetaria . Mar Drugs 2021; 19: 46
  • 115 Padmalayam I, Suto M. Role of adiponectin in the metabolic syndrome: Current perspectives on its modulation as a treatment strategy. Curr Pharm Des 2013; 19: 5755-5763
  • 116 Kang JH, Kim JK, Park WH, Park KK, Lee TS, Magae J, Nakajima H, Kim CH, Chang YC. Ascochlorin suppresses oxLDL-induced MMP-9 expression by inhibiting the MEK/ERK signaling pathway in human THP-1 macrophages. J Cell Biochem 2007; 102: 506-514
  • 117 Magae J, Tsuruga M, Maruyama A, Furukawa C, Kojima S, Shimizu H, Ando K. Relationship between peroxisome proliferator-activated receptor-gamma activation and the ameliorative effects of ascochlorin derivatives on type II diabetes. J Antibiot 2009; 62: 365-369
  • 118 Cho HJ, Kang JH, Jeong JH, Jeong YJ, Park KK, Park YY, Moon YS, Kim HT, Chung IK, Kim CH, Chang HW, Chang YC. Ascochlorin suppresses TGF-beta1-induced PAI-1 expression through the inhibition of phospho-EGFR in rat kidney fibroblast cells. Mol Biol Rep 2012; 39: 4597-4603
  • 119 Lee SH, Kwak CH, Lee SK, Ha SH, Park J, Chung TW, Ha KT, Suh SJ, Chang YC, Chang HW, Lee YC, Kang BS, Magae J, Kim CH. Anti-inflammatory effect of ascochlorin in LPS-stimulated RAW 264.7 macrophage cells is accompanied with the down-regulation of iNOS, COX-2 and proinflammatory cytokines through NF-kappaB, ERK1/2, and p 38 signaling pathway. J Cell Biochem 2016; 117: 978-987
  • 120 Park J, Kim HD, Lee SH, Kwak CH, Chang YC, Lee YC, Chung TW, Magae J, Kim CH. Ascochlorin induces caspase-independent necroptosis in LPS-stimulated RAW 264.7 macrophages. J Ethnopharmacol 2019; 239: 111898
  • 121 Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63: 928-940
  • 122 Togashi M, Ozawa S, Abe S, Nishimura T, Tsuruga M, Ando K, Tamura G, Kuwahara S, Ubukata M, Magae J. Ascochlorin derivatives as ligands for nuclear hormone receptors. J Med Chem 2003; 46: 4113-4123
  • 123 Tang C. Studies on the secondary metabolites of Arctic-derived fungi Nectria sp. B-13 [Master Thesis]. Shanghai: Shanghai Ocean University; 2016
  • 124 Kato A, Ando K, Tamura G, Arima K. Cylindrochlorin, a new antibiotic produced by cylindrocladium . J Antibiot 1970; 23: 168-169
  • 125 Sasaki H, Hosakawa T, Nawata Y, Ando K. Isolation and structure of ascochlorin and its analogs. Agric Biol Chem 1974; 38: 1463-1466
  • 126 Wei S, Ji Z. Isolation and antimicrobial activities of ascochlorin and its analogues from the metabolites of Cylindrocarpon olidum W1. Chin J Pestic Sci 2017; 19: 457-464
  • 127 Singh SB, Zink DL, Bills GF, Jenkins RG, Silverman KC, Lingham RB. Cylindrol A: A novel inhibitor of ras farnesyl-protein transferase from Cylindrocarpon lucidum . Tetrahedron Lett 1995; 36: 4935-4938
  • 128 Quan Z, Awakawa T, Wang D, Hu Y, Abe I. Multidomain P450 epoxidase and a terpene cyclase from the ascochlorin biosynthetic pathway in Fusarium sp. Org Lett 2019; 21: 2330-2334
  • 129 Zhang Z, Zhang Y, Yang C, Wang Q, Wang H, Zhang Y, Deng W, Nie Y, Liu Y, Luo X, Huang J, Wang J. Antitumor effects of 3-bromoascochlorin on small cell lung cancer via inhibiting MAPK pathway. Cell Biol Int 2021; 45: 1-11
  • 130 Tsuboya S, Shirasaki M, Ishimaru T. Terpene glycosides TAN-2355A and B of Acremonium and preparation of their derivatives as agonists of thyrotropin releasing hormone receptor. Japanese Patent 09157286, 1997