Planta Med 2023; 89(13): 1204-1214
DOI: 10.1055/a-2114-0980
Biological and Pharmacological Activity
Original Papers

1-Methoxyerythrabyssin II Induces Autophagy in Leukemia Cells via PI3K/Akt/mTOR Pathways

Bo Fang
1   College of Pharmacy, Wenzhou Medical University, Wenzhou, China
2   Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
Soeun Kim
2   Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
Yebon Kim
2   Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
Yinda Qiu
1   College of Pharmacy, Wenzhou Medical University, Wenzhou, China
2   Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
Chang-Min Lee
3   Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Korea
Yinshuang Lai
1   College of Pharmacy, Wenzhou Medical University, Wenzhou, China
Zhiguo Liu*
1   College of Pharmacy, Wenzhou Medical University, Wenzhou, China
Kun Wang*
1   College of Pharmacy, Wenzhou Medical University, Wenzhou, China
Namki Cho*
2   Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
› Author Affiliations
This research was supported by a grant from the National Research Foundation (NRF) of Korea funded by the Korean government (MSIT) (grant number: NRF-2022R1C1C1009626). In addition, this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under grant number 2022R1F1A1 059 721.


Leukemia, despite currently being one of the most lethal cancers worldwide, still lacks a focused treatment. The purpose of the present investigation was to evaluate the pharmacological effect of 1-methoxyerythrabyssin II, a pterocarpan identified in the roots of Lespedeza bicolor, on leukemic cells and to explore its underlying mechanism using a network pharmacology strategy. 1-Methoxyerythrabyssin II showed an antiproliferative effect in a concentration-dependent manner and exhibited a higher potency in human acute leukemia T cells (Jurkat). The G1 phase arrest induced by 1-methoxyerythrabyssin II was confirmed using a cell cycle assay, and the downregulation of CDK2 and cyclin D1 was observed using an immunoblot assay. Moreover, 1-methoxyerythrabyssin II-treated cells exhibited higher expression levels of LC3B, Atg-7, and Beclin 1 in addition to an enhanced fluorescence intensity in monodansylcadaverine staining, indicating autophagy induction by 1-methoxyerythrabyssin II. Furthermore, network pharmacology and molecular docking analyses revealed that the PI3K/Akt/mTOR pathway is a potential target of 1-methoxyerythrabyssin II in leukemic cells. In vitro assays further demonstrated that 1-methoxyerythrabyssin II promoted autophagy and suppressed cell proliferation by inhibiting the PI3K/Akt/mTOR pathway in leukemic cells. This discovery will contribute to the development of novel therapeutics and prophylactics against leukemia.

* Co-corresponding authors.

Supporting Information

Publication History

Received: 25 July 2022

Accepted after revision: 13 June 2023

Article published online:
17 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Sawyers CL, Denny CT, Witte ON. Leukemia and the disruption of normal hematopoiesis. Cell 1991; 64: 337-350
  • 2 Zhao Y, Wang Y, Ma S. Racial differences in four leukemia subtypes: Comprehensive descriptive epidemiology. Sci Rep 2018; 8: 548
  • 3 Xie B, Li L, Zhang Z, Zhao L, Cheng J, Zhou C, Cheng J, Yan J, Chen J, Yi J, Wang B, Jin S, Wei H. MicroRNA-1246 by targeting AXIN2 and GSK-3β overcomes drug resistance and induces apoptosis in chemo-resistant leukemia cells. J Cancer 2021; 12: 4196-4208
  • 4 Bonifant CL, Tasian SK. The future of cellular immunotherapy for childhood leukemia. Curr Opin Pediatr 2020; 32: 13-25
  • 5 Chang N, Luo Z, Li D, Song H. Indigenous uses and pharmacological activity of traditional medicinal plants in mount Taibai, China. Evid Based Complement Alternat Med 2017; 2017: 8329817
  • 6 Thuy NTT, Lee JE, Yoo HM, Cho N. Antiproliferative pterocarpans and coumestans from Lespedeza bicolor . J Nat Prod 2019; 82: 3025-3032
  • 7 Ma H, Wu F, Bai Y, Wang T, Ma S, Guo L, Liu G, Leng G, Kong Y, Zhang Y. Licoricidin combats gastric cancer by targeting the ICMT/Ras pathway in vitro and in vivo . Front Pharmacol 2022; 13: 972825
  • 8 Villinski JR, Bergeron C, Cannistra JC, Gloer JB, Coleman CM, Ferreira D, Azelmat J, Grenier D, Gafner S. Pyrano-isoflavans from Glycyrrhiza uralensis with antibacterial activity against Streptococcus mutans and Porphyromonas gingivalis . J Nat Prod 2014; 77: 521-526
  • 9 Lee SJ, Hossaine MD, Park SC. A potential anti-inflammation activity and depigmentation effect of Lespedeza bicolor extract and its fractions. Saudi J Biol Sci 2016; 23: 9-14
  • 10 Tarbeeva DV, Krylova NV, Iunikhina OV, Likhatskaya GN, Kalinovskiy AI, Grigorchuk VP, Shchelkanov MY, Fedoreyev SA. Biologically active polyphenolic compounds from Lespedeza bicolor . Fitoterapia 2022; 157: 105121
  • 11 Zeng Q, Nie X, Li L, Liu HF, Peng YY, Zhou WT, Hu XJ, Xu XY, Chen XL. Salidroside promotes sensitization to doxorubicin in human cancer cells by affecting the PI3K/Akt/HIF signal pathway and inhibiting the expression of tumor-resistance-related proteins. J Nat Prod 2022; 85: 196-204
  • 12 Fang B, Yoo G, Lee PJ, Qiu Y, Lee SH, Lee JS, Yoo HM, Cho N. Network pharmacology-based strategy to investigate the anti-breast cancer mechanisms of Spatholobus suberectus Dunn. Nat Prod Commun 2022; 17: 1-13
  • 13 Huang Y, Chen X, Guo G, Guo W, Ma Q, Yuan J. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Front Biosci (Landmark Ed) 2019; 24: 616-627
  • 14 Reedijk AMJ, Coebergh JWW, de Groot-Kruseman HA, van der Sluis IM, Kremer LC, Karim-Kos HE, Pieters R. Progress against childhood and adolescent acute lymphoblastic leukaemia in the Netherlands, 1990–2015. Leukemia 2021; 35: 1001-1011
  • 15 Boyer T, Gonzales F, Barthélémy A, Marceau-Renaut A, Peyrouze P, Guihard S, Lepelley P, Plesa A, Nibourel O, Delattre C, Wetterwald M, Pottier N, Plantier I, Botton S, Dombret H, Berthon C, Preudhomme C, Roumier C, Cheok M. Clinical significance of ABCB1 in acute myeloid leukemia: A comprehensive study. Cancers (Basel) 2019; 11: 1323
  • 16 Lonetti A, Cappellini A, Bertaina A, Locatelli F, Pession A, Buontempo F, Evangelisti C, Evangelisti C, Orsini E, Zambonin L, Neri LM, Martelli AM, Chiarini F. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol 2016; 9: 114
  • 17 Huang FF, Wu DS, Zhang L, Yu YH, Yuan XY, Li WJ, Chen XP, Zhao XL, Chen FP, Zeng H. Inactivation of PTEN increases ABCG2 expression and the side population through the PI3K/Akt pathway in adult acute leukemia. Cancer Lett 2013; 336: 96-105
  • 18 Rasool F, Nayak D, Katoch A, Faheem MM, Yousuf SK, Hussain N, Belawal C, Satti NK, Goswami A, Mukherjee D. Regiospecific synthesis of ring A fused withaferin A isoxazoline analogues: Induction of premature senescence by W-2b in proliferating cancer cells. Sci Rep 2017; 7: 13749
  • 19 Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007; 7: 961-967
  • 20 Yang J, Zhou Y, Cheng X, Fan Y, He S, Li S, Ye H, Xie C, Wu W, Li C, Pei H, Li L, Wei Z, Peng A, Wei Y, Li W, Chen L. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells. Sci Rep 2015; 5: 7697
  • 21 Yan L, Zhou L, Yan B, Zhang L, Du W, Liu F, Yuan Q, Tong P, Shan L, Efferth T. Growth factors-based beneficial effects of platelet lysate on umbilical cord-derived stem cells and their synergistic use in osteoarthritis treatment. Cell Death Dis 2020; 11: 857
  • 22 Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648-657
  • 23 Zhang DF, Yang ZC, Chen JQ, Jin XX, Qiu YD, Chen XJ, Shi HY, Liu ZG, Wang MS, Liang G, Zheng XH. Piperlongumine inhibits migration and proliferation of castration-resistant prostate cancer cells via triggering persistent DNA damage. BMC Complement Med Ther 2021; 21: 195
  • 24 Fang B, Li Z, Qiu Y, Cho N, Yoo HM. Inhibition of UBA5 expression and induction of autophagy in breast cancer cells by usenamine A. Biomolecules 2021; 11: 1348
  • 25 Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48: D845-D855
  • 26 Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45: D833-D839
  • 27 Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010; 38: W609-W614
  • 28 Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, Li H. ChemMapper: A versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 2013; 29: 1827-1829
  • 29 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47: D607-D613
  • 30 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504
  • 31 Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16: 284-287
  • 32 Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461
  • 33 Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S, Fayazi M, Feng Z, Flatt JW, Ganesan SJ, Ghosh S, Goodsell DS, Green RK, Guranovic V, Henry J, Hudson BP, Khokhriakov I, Lawson CL, Liang Y, Lowe R, Peisach E, Persikova I, Piehl DW, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Vallat B, Voigt M, Webb B, Westbrook JD, Whetstone S, Young JY, Zalevsky A, Zardecki C. RCSB Protein Data bank: Tools for visualizing and understanding biological macromolecules in 3D. Protein Sci 2022; 31: e4482
  • 34 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30: 2785-2791