Synthesis 2024; 56(06): 953-965
DOI: 10.1055/a-2152-0255
Emerging Trends in Glycoscience

Synthesis and Immunological Evaluation of Escherichia coli O1- Derived Oligosaccharide–Protein Conjugates toward Avian Pathogenic Escherichia coli O1 Vaccine Development

Katsunori Seki
Takumi Makikawa
Kazunobu Toshima
This research was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP20K21289 in Challenging Research (Exploratory), JP19H02724 and JP23H01966 in Scientific Research (B), and JST Core Research for Evolutional Science and Technology (CREST) Grant Number JPMJCR20R3.


Avian pathogenic Escherichia coli O1 (APEC O1) is a pathogenic bacterium that causes significant economic losses in the poultry industry and raises concerns about zoonotic infections. The development of effective vaccines against APEC O1 is essential due to antibiotic resistance and the potential for severe symptoms in both chickens and humans. In this context, we have been focusing on the O1A, O1B, and O1C antigen structures derived from E. coli O1 lipopolysaccharide (LPS). In this study, the first synthesis of the pentasaccharide repeating units of the O1B and O1C antigens was successfully achieved. The synthesis and immunological evaluation of their conjugates with bovine serum albumin (BSA) were conducted. Only the O1A-pentasaccharide structure is a glycotope candidate for APEC O1. Keyhole limpet hemocyanin (KLH)–O1A-pentasaccharide conjugate was also synthesized, and its immunogenicity was evaluated by the ELISA assay. The efficient production of antibodies capable of binding to both APEC O1 LPS and the O1A-pentasaccharide structure was observed, indicating that O1A-pentasaccharide is a promising vaccine candidate against APEC O1.

Supporting Information

Publication History

Received: 27 July 2023

Accepted after revision: 10 August 2023

Accepted Manuscript online:
10 August 2023

Article published online:
21 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • For selected reviews, see:
    • 1a Guabiraba R, Schouler C. FEMS Microbiol. Lett. 2015; 362: fnv118
    • 1b Dho-Moulin M, Fairbrother JM. Vet. Res. 1999; 30: 299
    • 3a Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. J. Bacteriol. 2007; 189: 3228
    • 3b Moulin-Schouleur M, Répérant M, Laurent S, Brée A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C. J. Clin. Microbiol. 2007; 45: 3366
    • 4a Ghunaim H, Abu-Madi MA, Kariyawasam S. Vet. Microbiol. 2014; 172: 13
    • 4b Han Y, Liu Q, Yi J, Liang K, Wei Y, Kong Q. Pathog. Dis. 2017; 75: ftx102
    • 4c Han Y, Liu Q, Willias S, Liang K, Li P, Cheng A, Kong Q. Vaccine 2018; 36: 1038
    • 5a Jann B, Shashkov AS, Gupta DS, Panasenko SM, Jann K. Carbohydr. Polym. 1992; 18: 51
    • 5b Gupta DS, Shashkov AS, Jann B, Jann K. J. Bacteriol. 1992; 174: 7963
  • 6 Nishi N, Seki K, Takahashi D, Toshima K. Angew. Chem. Int. Ed. 2021; 60: 1789
    • 7a Nakagawa A, Tanaka M, Hanamura S, Takahashi D, Toshima K. Angew. Chem. Int. Ed. 2015; 54: 10935
    • 7b Tanaka M, Nashida J, Takahashi D, Toshima K. Org. Lett. 2016; 18: 2288
    • 7c Tanaka M, Takahashi D, Toshima K. Org. Lett. 2016; 18: 5030
    • 7d Nishi N, Nashida J, Kaji E, Takahashi D, Toshima K. Chem. Commun. 2017; 53: 3018
    • 7e Nashida J, Nishi N, Takahashi Y, Igarashi M, Hayashi C, Takahashi D, Toshima K. J. Org. Chem. 2018; 83: 7281
    • 7f Tanaka M, Nakagawa A, Nishi N, Iijima K, Sawa R, Takahashi D, Toshima K. J. Am. Chem. Soc. 2018; 140: 3644
    • 7g Nishi N, Sueoka K, Iijima K, Sawa R, Takahashi D, Toshima K. Angew. Chem. Int. Ed. 2018; 57: 13858
    • 7h Tanaka M, Sato K, Yoshida R, Nishi N, Oyamada R, Inaba K, Takahashi D, Toshima K. Nat. Commun. 2020; 11: 2431
    • 7i Inaba K, Endo M, Iibuchi N, Takahashi D, Toshima K. Chem. Eur. J. 2020; 26: 10222
    • 7j Tomita S, Tanaka M, Inoue M, Inaba K, Takahashi D, Toshima K. J. Org. Chem. 2020; 85: 16254
    • 7k Inaba K, Naito Y, Tachibana M, Toshima K, Takahashi D. Angew. Chem. Int. Ed. 2023; in press DOI: 10.1002/anie.202307015.
  • 8 Halcomb RL, Danishefsky SJ. J. Am. Chem. Soc. 1989; 111: 6661
  • 9 Hargreaves JM, Guen YL, Guerreiro C, Descroix K, Mulard LA. Org. Biomol. Chem. 2014; 12: 7728
  • 10 Bock K, Pedersen C. J. Chem. Soc., Perkin Trans. 2 1974; 293
  • 11 Park TK, Kim IJ, Hu S, Bilodeau MT, Randolph JT, Kwon O, Danishefsky SJ. J. Am. Chem. Soc. 1996; 118: 11488
  • 12 Wu X, Ling C.-C, Bundle DR. Org. Lett. 2004; 6: 4407
  • 13 Xiong C, Feng S, Qiao Y, Guo Z, Gu G. Chem. Eur. J. 2018; 24: 8205
  • 14 Microbiologically Safe Foods . Stein E. ED-Tech Press; Essex: 2018: 53
  • 15 Davis MR. Jr, Goldberg JB. J. Visualized Exp. 2012; 63: e3916
  • 16 Leyva A, Quintana A, Sánchez M, Rodríguez EN, Cremata J, Sánchez JC. Biologicals 2008; 36: 134