CC BY 4.0 · Synlett 2024; 35(02): 205-208
DOI: 10.1055/a-2179-6570
letter

Organophotocatalytic Radical–Polar Cross-Coupling of Styrylboronic Acids and Redox-Active Esters

Jeremy Brals
a   EaStCHEM, School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK
,
Nicholas D’Arcy-Evans
a   EaStCHEM, School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK
,
Thomas M. McGuire
b   AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
,
a   EaStCHEM, School of Chemistry, University of St Andrews, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK
› Author Affiliations
Engineering and Physical Sciences Research Council (EP/W007517); Leverhulme Trust (RF-2022-014)


Abstract

We report the development of a radical–polar cross-coupling reaction using styrylboronic acids and redox-active esters under organophotoredox catalysis. The reaction proceeds through a formal polarity-mismatched radical addition. The use of an organic photocatalyst permitted very low loadings of the electron-shuttle additive and accelerated reaction times compared with established processes. The scope of the reaction was explored, and the utility of the products is demonstrated.

Supporting Information



Publication History

Received: 01 September 2023

Accepted: 21 September 2023

Accepted Manuscript online:
21 September 2023

Article published online:
23 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
    • 1b Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 1c Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146

      For HAT examples, see:
    • 2a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 2b Capaldo L, Lafayette Quadri L, Ravelli D. Green Chem. 2020; 22: 3376

    • For cascade reactions, see:
    • 2c Xu G.-Q, Xu P.-F. Chem. Commun. 2021; 57: 12914

    • For multicomponent reactions, see:
    • 2d Coppola GA, Pillitteri S, Van der Eycken EV, You S.-L, Sharma UK. Chem. Soc. Rev. 2022; 51: 2313

    • For dual photocatalysis examples, see:
    • 2e Skubi KL, Blum TR, Yoon TR. Chem. Rev. 2016; 116: 10035
    • 2f Mastandrea MM, Pericàs MA. Eur. J. Inorg. Chem. 2021; 3421
    • 2g Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BW, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485

      For examples, see:
    • 3a Li J, Luo Y, Cheo HW, Lan Y, Wu J. Chem 2019; 5: 192
    • 3b Badir SO, Molander GA. Chem 2020; 6: 1327
    • 3c Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
    • 3d Cabrera-Afonso MJ, Sookezian A, Badir SO, El Khatib M, Molander GA. Chem. Sci. 2021; 12: 9189

      For examples, see:
    • 4a Marotta A, Adams CE, Molloy JJ. Angew. Chem. Int. Ed. 2022; 61: e202207067
    • 4b Marotta A, Fang H, Adams CE, Marcus KS, Daniliuc GC, Molloy JJ. Angew. Chem. Int. Ed. 2023; 62: e202307540
    • 5a Yasu Y, Koike T, Akita M. Chem. Commun. 2013; 49: 2037
    • 5b Reina DF, Ruffoni A, Al-Faiyz YS. S, Douglas JJ, Sheikh NS, Leonori D. ACS Catal. 2017; 7: 4126
    • 5c Shen X, Huang C, Yuan X.-A, Yu S. Angew. Chem. Int. Ed. 2021; 60: 9672
    • 5d Chen H, Guo L, Yu S. Org. Lett. 2018; 20: 6255
    • 5e Qu C.-H, Yan X, Li S.-T, Liu J.-B, Xu Z.-G, Chen Z.-Z, Tang D.-Y, Liu H.-X, Song G.-T. Green Chem. 2023; 25: 3453
    • 5f Brals J, McGuire TM, Watson AJ. B. Angew. Chem. Int. Ed. 2023; 62: e202310462
    • 6a Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
    • 6b Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
    • 7a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7b Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
    • 7c Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
    • 8a Murarka S. Adv. Synth. Catal. 2018; 360: 1735
    • 8b Parida SK, Mandal T, Das S, Hota SK, Sarkar SD, Murarka S. ACS Catal. 2021; 11: 1640
    • 8c Zhu X, Fu H. Chem. Commun. 2021; 57: 9656
    • 10a Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. J. Org. Chem. 2017; 82: 9955
    • 10b Molloy JJ, Schäfer M, Wienhold M, Morack T, Daniliuc CG, Gilmour R. Science 2020; 369: 302
    • 10c Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem. Rev. 2022; 122: 2650
    • 10d Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
  • 11 Guo Y, Pei C, Koenigs RM. Nat. Commun. 2022; 13: 86
  • 12 Iida T, Itaya T. Tetrahedron 1993; 49: 10511
  • 13 Cain DL, McLaughlin C, Molloy JJ, Carpenter-Warren C, Anderson NA, Watson AJ. B. Synlett 2019; 30: 787
  • 14 Onodera S, Togashi R, Ishikawa S, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2020; 142: 7345
  • 15 Vedejs E, Fleck TJ. J. Am. Chem. Soc. 1989; 111: 5861
  • 16 Seo ET, Nelson RF, Fritsch JM, Marcoux LS, Leedy DW, Adams RN. J. Am. Chem. Soc. 1966; 88: 3498
  • 17 Lackner GL, Quasdorf KW, Pratsch G, Overman LE. J. Org. Chem. 2015; 80: 6012
  • 18 Wayner DD. M, McPhee DJ, Griller D. J. Am. Chem. Soc. 1988; 110: 132
  • 19 Alkenes 334; General Procedure An oven-dried photoreactor vial equipped with a Teflon-coated stirrer bar was charged with the appropriate NHPI ester (200 μmol, 1.0 equiv) and styrylboronic acid (400 μmol, 2.0 equiv), together with 4CzIPN (1.6 mg, 2.0 μmol, 1 mol%) and Ph3N (1.0 mg, 4.0 μmol, 2 mol%). The vial was then sealed, purged by using N2–vacuum cycles (×3), and backfilled with N2. Degassed dry DMSO-d 6 (2.0 mL, 0.1 M) was then added from a syringe. The cap was wrapped with Parafilm, and the mixture was stirred under blue LEDs at RT (~20 °C) for 1 h. The mixture was then partitioned between Et2O (5 mL) and brine (5 mL), and the organics were extracted with Et2O (2 × 10 mL). The organic phases were combined, washed with brine (15 mL), dried (Na2SO4), filtered, and concentrated under vacuum. The crude residue was purified by flash chromatography (silica gel; hexane, hexane–EtOAc, or hexane–Et2O). [(E)-2-Cyclohexylvinyl]benzene (3) Prepared according to the general procedure from 1,3-dioxoisoindolin-2-yl cyclohexanecarboxylate (2; 54.7 mg, 200 μmol, 1.0 equiv), [(E)-2-phenylvinyl]boronic acid (1; 59.2 mg, 400 μmol, 2.0 equiv), 4CzIPN (1.6 mg, 2.0 μmol, 1 mol%), and Ph2N (1.0 mg, 4.0 μmol, 2 mol%) in DMSO-d 6 (2 mL, 0.1 M). The crude residue (95% 1H NMR yield) was purified by flash chromatography (silica gel, hexane) to give a colorless oil; yield: 31.8 mg (85%, E/Z > 20:1). 1H NMR (500 MHz, CDCl3): δ = 7.37–7.33 (m, 2 H), 7.31–7.27 (m, 2 H), 7.21–7.16 (m, 1 H), 6.35 (d, J = 16.01 Hz, 1 H), 6.18 (dd, J = 15.98, 6.96 Hz, 1 H), 2.18–2.08 (m, 1 H), 1.86–1.74 (m, 4 H), 1.72–1.65 (m, 1 H), 1.39–1.25 (m, 2 H), 1.25–1.14 (m, 3 H). 13C NMR (126 MHz, CDCl3): δ = 138.2, 137.0, 128.6, 127.3, 126.9, 126.1, 41.3, 33.1, 26.3, 26.2.