Nuklearmedizin 2024; 63(01): 8-20
DOI: 10.1055/a-2185-7885
Review

DGN-Handlungsempfehlung (S1-Leitlinie): Radiojodtherapie bei benignen Schilddrüsenerkrankungen (Stand 6/2022 – AWMF-Registernummer: 031-003)

Radiojodtherapie bei benignen SchilddrüsenerkrankungenGuideline for Radioiodine Therapy for Benign Thyroid Diseases (6/2022 – AWMF No. 031-003)Weitere Beteiligte
M. Dietlein
1   Klinik und Poliklinik für Nuklearmedizin des Universitätsklinikums Köln
,
F. Grünwald
2   Klinik für Nuklearmedizin des Universitätsklinikums Frankfurt
,
M. Schmidt
1   Klinik und Poliklinik für Nuklearmedizin des Universitätsklinikums Köln
,
M. C. Kreissl
3   Bereich Nuklearmedizin, Klinik für Radiologie und Nuklearmedizin des Universitätsklinikums Magdeburg
,
M. Luster
4   Klinik für Nuklearmedizin des Universitätsklinikums Marburg
,
Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie e. V. (DGAV), Chirurgische Arbeitsgemeinschaft Endokrinologie (CAEK) der DGAV, Deutsche Gesellschaft für Chirurgie e. V. (DGCH), Deutsche Gesellschaft für Endokrinologie e. V. (DGE) › Author Affiliations

Zusammenfassung

Diese Version der Leitlinie zur Radiojodtherapie bei benignen Schilddrüsenerkrankungen ist ein Update der Version, die im Jahr 2015 durch die Deutsche Gesellschaft für Nuklearmedizin (DGN) in Abstimmung mit der Deutschen Gesellschaft für Endokrinologie (DGE, Sektion Schilddrüse) und der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV) publiziert worden war. Die Leitlinie ist mit den Empfehlungen der European Association of Nuclear Medicine (EANM) harmonisiert worden. Nach der „Richtlinie Strahlenschutz in der Medizin“ ist die „rechtfertigende Indikation“ zur Radiojodtherapie durch einen fachkundigen Arzt („Fachkunde in der Therapie mit offenen radioaktiven Stoffen“) zu stellen. Daher werden Indikationen zur Radiojodtherapie und alternative Behandlungsmöglichkeiten in dieser Leitlinie diskutiert. Die Leitlinie wurde von einer Expertengruppe im informellen Konsens verabschiedet und entspricht damit einer Verfahrensanweisung der ersten Stufe (S1) nach den Kriterien der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF).

Summary

This version of the guideline for radioiodine therapy of benign thyroid disorders is an update of the version, which was published by the German Society of Nuclear Medicine (Deutsche Gesellschaft für Nuklearmedizin, DGN) in co-ordination with the German Society of Endocrinology (Deutsche Gesellschaft für Endokrinologie, DGE, Sektion Schilddrüse) and the German Society of General- and Visceral-Surgery (Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie, DGAV) in 2015. This guideline was harmonized with the recommendations of the European Association of Nuclear Medicine (EANM). According to the German “Directive on Radiation Protection in Medicine” the physician specialised in nuclear medicine („Fachkunde in der Therapie mit offenen radioaktiven Stoffen”) is responsible for the justification to treat with radioiodine. Therefore, relevant medical indications for radioiodine therapy and alternative therapeutic options are discussed within the guideline. This procedure guideline is developed in the consensus of an expert group. This fulfils the level S1 (first step) within the German classification of Clinical Practice Guidelines.



Publication History

Received: 24 September 2023

Accepted: 25 September 2023

Article published online:
23 October 2023

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Cooper DS, Doherty GM, Haugen BR. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167-1214
  • 2 Dralle H, Sekulla C. Morbidität nach subtotaler und totaler Thyreoidektomie beim Morbus Basedow: Entscheidungsgrundlage für Operationsindikation und Resektionsausmaß. Z ärztl Fortbild Qual Gesundh 2004; 98: 45-53
  • 3 Kahaly GJ, Bartalena L, Hegedüs L. et al. 2018 European Thyroid Association guideline for the management of Graves’ hyperthyroidism. Eur Thyroid J 2018; 7: 167-186
  • 4 Schicha H, Reiners C, Moser E. et al. Subclinical thyroid disease [Editorial]. Nuklearmedizin 2004; 43: 69-71
  • 5 Silberstein EB, Alavi A, Balon HR. et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med 2012; 53: 1633-1651
  • 6 Stokkel MPM, Handkiewicz JunakD, Lassmann M. et al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010; 37: 2218-2228
  • 7 Wesche MF, Tiel-v Buul MMC, Lips P. et al. A randomized trial comparing levothyroxine with radioactive iodine in the treatment of sporadic nontoxic goiter. J Clin Endocrinol Metab 2001; 86: 998-1005
  • 8 Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie. Operative Therapie benigner Schilddrüsenerkrankungen. Stand 2021 – AWMF-Leitlinien-Register Nr. 088-007.
  • 9 Moleti M, Violi MA, Montanini D. et al. Radioiodine ablation of postsurgical thyroid remnants after treatment with recombinant human TSH (rh TSH) in patients with moderate-to-servere Graves’ orbitopathy (GO): a prospective, randomized, single-blind clinical trial. J Clin Endocrinol Metab 2014; 99: 1783-1789
  • 10 Léger J, Carel JC. Management of endocrine disease: arguments for the prolonged use of antithyroid drugs in children with Graves’ disease. Eur J Endocrinol 2017; 177: R59-R67
  • 11 Ross DS, Burch HB, Cooper DS. et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016; 26: 1343-1420
  • 12 Alexander EK, Pearce EN, Brent GA. et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017; 27: 315-389
  • 13 Kim J, Choi MS, Park J. et al. Changes in thyrotropin receptor antibody levels following total thyroidectomy or radioiodine therapy in patients with refractory Graves’ disease. Thyroid 2021; 8: 1264-1271
  • 14 Selmer C, Olesen JB, Hansen ML. et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ 2012; 345: e7895
  • 15 Selmer C, Olesen JB, Hansen ML. et al. Subclinical and ouvert thyroid dysfunction and risk of all-cause mortality and cardiovascular events: a large population study. J Clin Endocrinol Metab 2014; 99: 2372-2382
  • 16 Cesareo R, Palermo A, Pasqualini V. et al. Radiofrequency ablation on autonomously functioning thyroid nodules: a critical appraisal and review of the literature. Front Endocrinol (Lausanne) 2020; 11: 317
  • 17 Grani G, Sponziello M, Pecce V. et al. Contemorary thyroid nodule evaluation and management. J Clin Endocrinol Metab 2020; 105: 2869-2883
  • 18 Dobnig H, Amrein K. Monopolar radiofrequency ablation of thyroid nodules: a prospective Austrian single-center study. Thyroid 2018; 28: 472-480
  • 19 Bakheet SM, Hammami MM. Patterns of radioiodine uptake by the lactating breast. Eur J Nucl Med 1994; 21: 604-608
  • 20 Hammami MM, Bakheet S. Radioiodine breast uptake in nonbreastfeeding women: clinical and scintigraphic characteristics. J Nucl Med 1996; 37: 26-31
  • 21 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26: 1-133
  • 22 Dunkelmann S, Kuenster H, Nabavi E. et al. Change in the intrathyroidal kinetics of radioiodine under continued and discontinued antithyroid medication in Graves’ disease. Eur J Nucl Med Mol Imaging 2007; 34: 228-236
  • 23 Kubota S, Ohye H, Yano G. et al. Two-day thioamide withdrawal prior to radioiodine uptake sufficiently increases uptake and does not exacerbate hyperthyroidism compared to 7-day withdrawal in Graves’ disease. Endocrine J 2006; 53: 603-607
  • 24 Walter MA, Crist-Crain M, Schindler C. et al. Outcome of radioiodine therapy without, on or 3 days off carbimazole: a prospective interventional three-group comparison. Eur J Nucl Med 2006; 33: 730-737
  • 25 Andersen SL, Lonn S, Vestergaard P. et al. Births defects after use of antithyroid drugs in early pregnancy: a Swedish nationwide study. Eur J Endocrinol 2017; 177: 369-378
  • 26 Andersen SL, Knøsgaard L, Olsen J. et al. Maternal thyroid function, use of antithyroid drugs in early pregnancy, and birth defects. J Clin Endocrinol Metab 2019; 104: 6040-6048
  • 27 Bonnema SJ, Bennedbaek FN, Veje A. et al. Propylthiouracil before I-131 therapy of hyperthyroid diseases; effect on cure rate evaluated by a randomized clinical trial. J Clin Endocrinol Metab 2004; 89: 4439-4444
  • 28 Kobe C, Weber I, Eschner W. et al. Graves’ disease and radioiodine therapy: is success of ablation dependent on the choice of thyreostatic medication?. Nuklearmedizin 2008; 47: 153-166
  • 29 Santos RB, Romaldini JH, Ward LS. Propylthiouracil reduces the effectiveness of radioiodine treatment in hyperthyroid patients with Graves’ disease. Thyroid 2004; 14: 525-530
  • 30 Dietlein M, Hohberg M, Lassmann H. et al. DGN-Handlungsempfehlung (S1-Leitlinie): Schilddrüsenszintigraphie mit Tc-99m Pertechnetat und I-123 Natriumiodid. Stand 7/2022 – AWMF-Registernummer: 031-011.
  • 31 Nimmons GL, Funk GF, Graham MM. et al. Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol Head Neck Surg 2013; 139: 479-482
  • 32 Sohn SY, Choi JH, Kim NK. et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid 2014; 24: 872-877
  • 33 Padovani RP, Kasamatsu TS, Nakabashi CC. et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 2012; 22: 926-930
  • 34 Mishra A, Pradhan PK, Gambhir S. et al. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res 2015; 193: 731-737
  • 35 Dietlein M, Hohberg M, Lassmann M. et al. DGN-Handlungsempfehlung (S1-Leitlinie): Radioiodtest mit I-131 oder I-123. Stand 7/2022 – AWMF-Registernummer: 031-012.
  • 36 Kobe C, Eschner W, Wild M. et al. Radioiodine therapy of benign thyroid disorders: what are the effective thyroidal half-life and uptake of 131I?. Nucl Med Commun 2010; 31: 201-205
  • 37 Dunkelmann S, Endlicher D, Prillwitz A. et al. Ergebnisse der TcTUs-optimierten Radioiodtherapie bei multifokaler und disseminierter Autonomie. Nuklearmedizin 1999; 38: 131-139
  • 38 Reinhardt MJ, Joe A, von Mallek D. et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients with multifocal and disseminated autonomy on the basis of 99mTc-pertechnetate thyroid uptake. Eur J Nucl Med 2002; 29: 480-485
  • 39 Cappelen T, Unhjem JF, Amundsen AL. et al. Radiation exposure to family members of patients with thyrotoxicosis treated with iodine-131. Eur J Nucl Med 2006; 33: 81-86
  • 40 International Commission on Radiological Protection. Release of patients after therapy with unsealed radionuclides. Ann ICRP 2004; 34: 1-79 . Erratum in: Ann ICRP 2004; 34(3–4): 281. Ann ICRP 2006; 36: 77.
  • 41 Richtlinie zur Strahlenschutzverordnung (StrlSchV) vom 26.05.2011 (GMBl 2011, Nr. 44-47, S. 867), zuletzt geändert durch RdSchr. d. BMUB v. 11.07.2014 (GMBl. 2014, Nr.49, S. 1020).
  • 42 Strahlenschutzgesetz (StrlSchG) vom 27.06.2017 (BGBl. I S. 1966), das zuletzt durch Artikel 5 Absatz 1 des Gesetzes vom 23. Oktober 2020 (BGBl. I S. 2232) geändert worden ist.
  • 43 Nguyen CT, Sasso EB, Barton L. et al. Graves’ hyperthyroidism in pregnancy: a clinical review. Clin Diabetes Endocrinol 2018; 4: 4
  • 44 Sawka AM, Lakra DC, Lea J. et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol 2008; 69: 479-490
  • 45 Cohen RZ, Felner EI, Heiss KF. et al. Outcomes analysis of radioactive iodine and total thyroidectomy for pediatric Graves’ disease. J Pediatr Endocrinol Metab 2016; 29: 319-325
  • 46 Verburg FA, Hoffmann M, Iakovou I. et al. Errare humanum est, sed in errare perseverare diabolicum: methodological errors in the assessment of the relationship between I-131 therapy and possible increases in the incidence of malignancies. Eur J Nucl Med Mol Imaging 2020; 47: 519-522
  • 47 Kreissl MC, Reinecke M, Luster M. Strahlenrisiken nach Radiojodtherapie. Der Nuklearmediziner 2020; 43: 213-217
  • 48 Read CH, Tansey MJ, Menda Y. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J Clin Endocrinol Metab 2004; 89: 4229-4233
  • 49 Tulchinsky M, Brill AB. Spotlight on the association of radioactive iodine treatment with cancer mortality in patients with hyperthyroidism is keeping the highest risk from antithyroid drugs in the blind spot. Clin Nucl Med 2019; 44: 789-791
  • 50 Zhang X, Shan G, Liu Q. et al. Regarding the manuscript entitled “Association of radioactive iodine treatment with cancer mortality in patients with hyperthyroidism”. Eur J Nucl Med Mol Imaging 2019; 46: 2410-2411
  • 51 Kobe C, Eschner W, Sudbrock F. et al. Graves’ disease and radioiodine therapy: Is success of ablation dependent on the achieved dose above 200 Gy?. Nuklearmedizin 2008; 47: 13-17
  • 52 Willegaignon J, Sapienza MT, Buchpiguel CA. Radioiodine therapy for Graves disease: thyroid absorbed dose of 300 Gy – tuning the target for therapy planning. Clin Nucl Med 2013; 38: 231-236
  • 53 Chao M, Jiawei X, Guoming W. et al. Radioiodine treatment for pediatric hyperthyroid Graves’ disease. Eur J Pediatr 2009; 168: 1165-1169
  • 54 Ma C, Kuang A, Xie J. et al. Radioiodine for pediatric Graves’ disease. John Wiley & Sons, Ltd, 2009. Cochrane Database of Systematic Reviews 2008; (03) CD006294 DOI: 10.1002/14651858.CD006294.pub2.
  • 55 Rivkees SA, Dinauer C. An optimal treatment for pediatric Graves' disease is radioiodine. J Clin Endocrinol Metab 2007; 92: 797-800
  • 56 Rivkees SA, Cornelius EA. Influence of iodine-131 dose on the outcome of hyperthyroidism in children. Pediatrics 2003; 111: 745-749
  • 57 Bachmann J, Kobe C, Bor S. et al. Radioiodine therapy for thyroid volume reduction of large goitres. Nucl Med Commun 2009; 30: 466-471
  • 58 Strahlenschutzverordnung – StrlSchV – vom 29. November 2018 (BGBl. I S. 2034, 2036), die zuletzt durch Artikel 1 der Verordnung vom 20. November 2020 (BGBl. I S. 2502) geändert worden ist.
  • 59 Strahlenschutzkommission (SSK) des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Ambulante, fraktionierte Radioiodtherapie. Empfehlung der Strahlenschutzkommission vom 22./23. Februar 1996. Bundesanzeiger Nr. 132 (18.7.1996).
  • 60 Strahlenschutzkommission (SSK) des Bundesministeriums für Umwelt, Naturschutz. Strahlenschutzgrundsätze für die Radioiodtherapie. Empfehlung der Strahlenschutzkommission vom 5./6. Dezember 1996. Bundesanzeiger Nr. 68 (11.4.1997).
  • 61 Bartalena L, Marcocci C, Bogazzi F. et al. Relation between therapy for hyperthyroidism and the course of Graves' ophthalmopathy. N Engl J Med 1998; 338: 73-78
  • 62 Bartalena L, Baldeschi L, Dickinson A. et al. Consensus statement of the European Group on Graves' orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol 2008; 158: 273-285
  • 63 Eckstein AE, Plicht M, Lex H. et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 2006; 91: 3464-3470
  • 64 Perros P, Kendall-Taylor P, Neoh C. et al. A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Graves’ ophthalmopathy. J Clin Endocrinol Metab 2005; 90: 5321-5323
  • 65 Dederichs B, Dietlein M, Jenniches-Kloth B. et al. Radioiodine therapy of Graves’ hyperthyroidism in patients without pre-existing ophthalmopathy: can glucocorticoids prevent the development of new ophthalmopathy?. Exp Clin Endocrinol Diabetes 2006; 115: 366-370
  • 66 Lai A, Sassi L, Compri E. et al. Lower dose prednisone prevents radioiodine-associated exacerbation of initially mild or absent Graves’ orbitopathy: a retrospective cohort study. J Clin Endocrinol Metab 2010; 95: 1333-1337
  • 67 Vannucchi G, Campi I, Covelli D. et al. Graves’ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endocrinol Metab 2009; 94: 3381-3386
  • 68 Shiber S, Stiebel-Kalish H, Shimon I. et al. Glucocorticoid regimens for prevention of Graves’ ophthalmopathy progression following radioiodine treatment: systematic review and meta-analysis. Thyroid 2014; 24: 1515-1523
  • 69 Bahn RS, Burch HB, Cooper DS. et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 2011; 21: 593-641
  • 70 Kahaly GJ, Bartalena L, Hegedüs L. The American Thyroid Association/American Association of Clinical Endocrinologists guidelines for hyperthyroidism and other causes of thyrotoxicosis: a European perspective. Thyroid 2008; 21: 585-591
  • 71 Lantz M, Planck T, Asman P. et al. Increased TRAb and/or low anti-TPO titers at diagnosis of Graves’ disease are associated with an increased risk of developing ophthalmopathy after onset. Exp Clin Endocrinol Diabetes 2014; 122: 113-117
  • 72 Zang S, Ponto KA, Kahaly G. Intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab 2011; 96: 320-332
  • 73 Stan MN, Durski JM, Brito JP. et al. Cohort study on radioactive iodine-induced hypothyroidism: implications for Graves’ ophthalmopathy and optimal timing for thyroid hormone assessment. Thyroid 2013; 23: 620-625
  • 74 Chen DY, Schneider PF, Zhang XS. et al. Changes in Graves’ ophthalmopathy after radioiodine and anti-thyroid drug treatment of Graves’ disease from 2 prospective, randomized, open-label, blinded end point studies. Exp Clin Endocrinol Diabetes 2014; 122: 1-6
  • 75 Nwatsock JF, Taieb D, Tessonnier L. et al. Radioiodine thyroid ablation in Graves’ hyperthyroidism: merits and pitfalls. World J Nucl Med 2012; 11: 7-11
  • 76 Marcocci C, Kahaly GJ, Krassas GE. et al. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med 2011; 364: 1920-1931
  • 77 Strahlenschutzkommission (SSK) des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Nachsorge für Patienten nach Strahlenbehandlung. Empfehlung der Strahlenschutzkommission vom 11./12. Februar 1998. Bundesanzeiger Nr. 114 (6.8.1998).
  • 78 Jensen BE, Bonnema SJ, Hegedues L. Glucocorticoids do not influence the effect of radioiodine therapy in Graves’ disease. Eur J Endocrinol 2005; 153: 15-21
  • 79 Kahraman D, Keller C, Schneider C. et al. Development of hypothyroidism in long-term follow-up in patients with toxic goiter after radioiodine therapy. Clin Endocrinol 2012; 76: 297-303
  • 80 Reinhardt M, Kim B, Wissmeyer M. et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients according to thyroid uptake of 99mTc-pertechnetate: applicability to unifocal thyroid autonomy?. Eur J Nucl Med 2006; 33: 608-612
  • 81 Vogt H, Wengenmair H, Kopp J. et al. Radioiodine therapy for combined disseminated and nodular thyroid autonomy. [German] Nuklearmedizin 2006; 45: 101-104
  • 82 Rokni H, Sadeghi R, Moossavi Z. et al. Efficacy of different protocols of radioiodine therapy for treatment of toxic nodular goiter: systematic review and meta-analysis of the literature. Int J Endocrinol Metab 2014; 12: e14424
  • 83 Dunkelmann S, Neumann V, Staub U. et al. Ergebnisse einer risikoadaptierten und funktionsorientierten Radioiodtherapie bei Morbus Basedow. Nuklearmedizin 2005; 44: 238-242
  • 84 Reinhardt MJ, Brink I, Joe AY. et al. Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. Eur J Nucl Med 2002; 29: 1118-1124
  • 85 Dietlein M, Dederichs B, Kobe C. et al. Therapy for non-toxic multinodular goiter: radioiodine therapy as attractive alternative to surgery. [German] Nuklearmedizin 2006; 45: 21-34
  • 86 Ceccarelli C, Bencivelli W, Vitti P. et al. Outcome of radioiodine-131 therapy in hyperfunctioning thyroid nodules: a 20 years’ retrospective study. Clin Endocrinol (Oxf) 2005; 62: 331-335
  • 87 Holm LE, Lundell G, Israelsson A. et al. Incidence of hypothyroidism occurring long after iodine-131 therapy for hyperthyroidism. J Nucl Med 1982; 23: 103-107
  • 88 Dunkelmann S, Wolf R, Koch A. et al. Incidence of radiation-induced Graves’ disease in patients treated with radioiodine for thyroid autonomy before and after introduction of a high-sensitivity TSH receptor antibody assay. Eur J Nucl Med 2004; 31: 1428-1434
  • 89 Schmidt M, Gorbauch E, Dietlein M. et al. Incidence of post-radioiodine immunogenic hyperthyroidism / Graves’ disease in relation to a temporary increase in TSH-receptor antibodies after radioiodine therapy for autonomous thyroid disease. Thyroid 2006; 16: 281-288
  • 90 Chen DY, Jing J, Schneider PF. et al. Comparison of the long-term efficacy of low-dose 131I versus antithyroid drugs in the treatment of hyperthyroidism. Nucl Med Commun 2009; 30: 160-168
  • 91 Chen DY, Schneider PF, Zhang XS. et al. Striving for euthyroidism in radioiodine therapy of Graves’ disease: a 12-year prospective, randomized, open-label blinded end point study. Thyroid 2011; 21: 647-654