Synthesis
DOI: 10.1055/a-2323-0770
paper

Synthesis of Dibenzo[b,h][1,5]naphthyridin-7(12H)-ones: The Pictet–Spengler Reaction versus a Rearrangement of 4-Phenyl[1,3]oxazolo[4,5-c]quinolines

a   Department of Organic and Analytical Chemistry, Dostoevsky Omsk State University, Mira ave. 55A, Omsk 644077, Russian Federation
b   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
Sergey A. Kirnosov
a   Department of Organic and Analytical Chemistry, Dostoevsky Omsk State University, Mira ave. 55A, Omsk 644077, Russian Federation
,
Ekaterina S. Keyn
a   Department of Organic and Analytical Chemistry, Dostoevsky Omsk State University, Mira ave. 55A, Omsk 644077, Russian Federation
,
a   Department of Organic and Analytical Chemistry, Dostoevsky Omsk State University, Mira ave. 55A, Omsk 644077, Russian Federation
b   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
Anastasia S. Kostyuchenko
b   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
,
a   Department of Organic and Analytical Chemistry, Dostoevsky Omsk State University, Mira ave. 55A, Omsk 644077, Russian Federation
b   Laboratory of New Organic Materials, Omsk State Technical University, Mira Ave. 11, 644050 Omsk, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (Grant No. 23-73-01151).


Abstract

Two approaches were proposed for the synthesis of dibenzo[b,h][1,5]naphthyridin-7(12H)-ones. The one-step method based on the Pictet–Spengler reaction of 3-amino-2-phenylquinolin-4(1H)-one with aromatic aldehydes requires heating in a strong acidic media, which leads to significant limitations on the possible products. The second approach is based on the conversion of 3-amino-2-phenylquinolin-4(1H)-one to 4-phenyl[1,3]oxazolo[4,5-c]quinolines followed by rearrangement under the action of AlCl3. A significant advantage of the two-step synthesis is the possibility of obtaining a wider range of dibenzo[b,h][1,5]naphthyridin-7(12H)-ones, including those not available using the Pictet–Spengler reaction.

Supporting Information



Publication History

Received: 01 April 2024

Accepted after revision: 10 May 2024

Accepted Manuscript online:
10 May 2024

Article published online:
28 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ferlin M, Marzano C, Chiarelotto G, Baccichetti F, Bordin F. Eur. J. Med. Chem. 2000; 35: 827
    • 1b Di Pizio A, Laghezza A, Tortorella P, Agamennone M. ChemMedChem 2013; 8: 1475
    • 1c Perez C, Li J, Parlati F, Rouffet M, Ma Y, Mackinnon AL, Chou TF, Deshaies RJ, Cohen SM. J. Med. Chem. 2017; 60: 1343
    • 1d Defaux J, Antoine M, Logé C, Le Borgne M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Bioorg. Med. Chem. Lett. 2014; 24: 3748
    • 1e Wu JF, Liu MM, Huang SX, Wang Y. Bioorg. Med. Chem. Lett. 2015; 25: 3251
    • 1f Alonso C, Fuertes M, Gonzalez M, Rodriguez-Gascon A, Rubiales G, Palacios F. Curr. Top. Med. Chem. 2015; 14: 2722
    • 2a Parhi AK, Zhang Y, Saionz KW, Pradhan P, Kaul M, Trivedi K, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2013; 23: 4968
    • 2b Surivet JP, Zumbrunn C, Rueedi G, Hubschwerlen C, Bur D, Bruyère T, Locher H, Ritz D, Keck W, Seiler P, Kohl C, Gauvin JC, Mirre A, Kaegi V, Dos Santos M, Gaertner M, Delers J, Enderlin-Paput M, Boehme M. J. Med. Chem. 2013; 56: 7396
    • 2c Singh SB, Kaelin DE, Wu J, Miesel L, Tan CM, Meinke PT, Olsen D, Lagrutta A, Bradley P, Lu J, Patel S, Rickert KW, Smith RF, Soisson S, Wei C, Fukuda H, Kishii R, Takei M, Fukuda Y. ACS Med. Chem. Lett. 2014; 5: 609
    • 3a Rizo-Liendo A, Arberas-Jiménez I, Martin-Encinas E, Sifaoui I, Reyes-Batlle M, Chao-Pellicer J, Alonso C, Palacios F, Piñero JE, Lorenzo-Morales J. Pharmaceuticals 2021; 14: 1013
    • 3b Kandepedu N, Gonzàlez Cabrera D, Eedubilli S, Taylor D, Brunschwig C, Gibhard L, Njoroge M, Lawrence N, Paquet T, Eyermann CJ, Spangenberg T, Basarab GS, Street LJ, Chibale K. J. Med. Chem. 2018; 61: 5692
    • 3c Zhu S, Zhang Q, Gudise C, Meng L, Wei L, Smith E, Kong Y. Bioorg. Med. Chem. Lett. 2007; 17: 6101
    • 3d Tejería A, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, Alonso C, González M, Rubiales G, Palacios F. Eur. J. Med. Chem. 2018; 152: 137
    • 4a Boros EE, Edwards CE, Foster SA, Fuji M, Fujiwara T, Garvey EP, Golden PL, Hazen RJ, Jeffrey JL, Johns BA, Kawasuji T, Kiyama R, Koble CS, Kurose N, Miller WH, Mote AL, Murai H, Sato A, Thompson JB, Woodward MC, Yoshinaga T. J. Med. Chem. 2009; 52: 2754
    • 4b Johns BA, Kawasuji T, Weatherhead JG, Boros EE, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH, Kurose N, Matsumura K, Fujiwara T. Bioorg. Med. Chem. Lett. 2011; 21: 6461
    • 4c Johns BA, Kawasuji T, Weatherhead JG, Boros EE, Thompson JB, Koble CS, Garvey EP, Foster SA, Jeffrey JL, Fujiwara T. Bioorg. Med. Chem. Lett. 2013; 23: 422
    • 5a Hirota J, Usui K, Fuchi Y, Sakuma M, Matsumoto S, Hagihara R, Karasawa S. Chem. Eur. J. 2019; 25: 14943
    • 5b Yokoo H, Ohsaki A, Kagechika H, Hirano T. Eur. J. Org. Chem. 2018; 679
    • 5c Wang K, Bao Y, Zhu S, Liu R, Zhu H. Dyes Pigm. 2020; 181: 108596
    • 6a Liao SH, Shiu JR, Liu SW, Yeh SJ, Chen YH, Chen CT, Chow TJ, Wu CI. J. Am. Chem. Soc. 2009; 131: 763
    • 6b Lee CC, Yuan CH, Liu SW, Shih YS. J. Display Technol. 2011; 7: 454
    • 7a Litvinov VP, Roman SV, Dyachenko VD. Russ. Chem. Rev. 2001; 70: 299
    • 7b Ivanov AS, Tugusheva NZ, Granik VG. Russ. Chem. Rev. 2005; 74: 915
    • 7c Fuertes M, Masdeu C, Martin-Encinas E, Selas A, Rubiales G, Palacios F, Alonso C. Molecules 2020; 25: 3252
  • 8 Masdeu C, Fuertes M, Martin-Encinas E, Selas A, Rubiales G, Palacios F, Alonso C. Molecules 2020; 25: 3508
    • 9a Li X, Liang D, Huang W, Sun H, Wang L, Ren M, Wang B, Ma Y. Tetrahedron 2017; 73: 7094
    • 9b Chen WL, Chen CY, Chen YF, Hsieh JC. Org. Lett. 2015; 17: 1613
    • 10a Hu JD, Huang LL, Feng HD. Pharm. Front. 2023; 5: e227
    • 10b Larghi EL, Amongero M, Bracca AB. J, Kaufman TS. ARKIVOC 2005; (xii): 98
    • 10c Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 10d Kundu BK, Agarwal PK, Sharma S, Sawant DK, Mandadapu A, Saifuddin M, Gupta S. Curr. Org. Synth. 2012; 9: 357
    • 11a Heravi MM, Khaghaninejad S, Nazari N. Adv. Heterocycl. Chem. 2014; 112: 183
    • 11b Heravi MM, Nazari N. Curr. Org. Chem. 2015; 19: 2358
  • 12 Hradil P, Grepl M, Hlaváč J, Soural M, Maloň M, Bertolasi V. J. Org. Chem. 2006; 71: 819
    • 13a Shatsauskas AL, Abramov AA, Chernenko SA, Kostyuchenko AS, Fisyuk AS. Synthesis 2020; 52: 227
    • 13b Shatsauskas AL, Abramov AA, Saibulina ER, Palamarchuk IV, Kulakov IV, Fisyuk AS. Chem. Heterocycl. Comp. 2017; 53: 186
    • 13c Fisyuk AS, Kulakov IV, Goncharov DS, Nikitina OS, Bogza YP, Shatsauskas AL. Chem. Heterocycl. Comp. 2014; 50: 217
    • 13d Fisyuk AS, Kostyuchenko AS, Goncharov DS. Russ. J. Org. Chem. 2020; 56: 1863
    • 13e Shuvalov VYu, Chernenko S. А, Shatsauskas AL, Samsonenko AL, Dmitriev MV, Fisyuk AS. Chem. Heterocycl. Comp. 2021; 57: 764
    • 13f Shuvalov VYu, Rozhkova YS, Plekhanova IV, Kostyuchenko AS, Shklyaev YV, Fisyuk AS. Chem. Heterocycl. Comp. 2022; 58: 7
    • 14a Kulakov I, Shatsauskas A, Matsukevich M, Palamarchuk I, Seilkhanov T, Gatilov Y, Fisyuk A. Synthesis 2017; 49: 3700
    • 14b Shatsauskas AL, Saibulina ER, Gatilov YV, Kostyuchenko AS, Fisyuk AS. Chem. Heterocycl. Comp. 2019; 55: 1080
    • 14c Shatsauskas AL, Shatalin YV, Shubina VS, Chernenko SA, Kostyuchenko AS, Fisyuk AS. Dyes Pigm. 2022; 204: 110388
    • 14d Kulakov I, Matsukevich M, Levin M, Palamarchuk I, Seilkhanov T, Fisyuk A. Synlett 2018; 29: 1741
    • 15a Aleksandrov AA, El’chaninov MM, Illenzeer EV. Russ. J. Org. Chem. 2013; 49: 1361
    • 15b Illenzeer EV, Aleksandrov AA, El’chaninov MM. Russ. J. Gen. Chem. 2013; 83: 95
    • 15c Saitz C, Rodríguez H, Márquez A, Cañete A, Jullian C, Zanocco A. Synth. Commun. 2001; 31: 135
    • 16a Li M, Yuan Y, Chen Y. Chin. J. Chem. 2021; 39: 3101
    • 16b Li JJ. Bischler–Napieralski reaction. In Name Reactions. Springer; Cham: 2014: 56
    • 16c Nagubandi S, Fodor G. J. Heterocycl. Chem. 1980; 17: 1457
  • 17 Dulla B, Vijayavardhini S, Rambau D, Anuradha V, Rao M, Pal M. Curr. Green Chem. 2013; 1: 73
  • 18 Shatsauskas AL, Zablotskii Y. А, Chernenko S. А, Zheleznova TYu, Shuvalov VYu, Kostyuchenko AS, Fisyuk AS. Chem. Heterocycl. Comp. 2021; 57: 1212
    • 19a Shatsauskas AL, Mamonova TE, Stasyuk AJ, Chernenko SA, Slepukhin PA, Kostyuchenko AS, Fisyuk AS. J. Org. Chem. 2020; 85: 10072
    • 19b Shatsauskas AL, Keyn ES, Stasyuk AJ, Kirnosov SA, Shuvalov VYu, Kostyuchenko AS, Fisyuk AS. Synthesis 2024; 56: 507
    • 19c Shuvalov VYu, Shatsauskas AL, Zheleznova TYu, Kostyuchenko AS, Fisyuk AS. Synthesis 2024; 56: 1324
  • 20 Dixon LA. Polyphosphate Ester. In Encyclopedia of Reagents for Organic Synthesis. Wiley; Chichester: 2001: 185
  • 21 Nguyen TT. T, Nguyen LA, Ngo QA, Koleski M, Nguyen TB. Org. Chem. Front. 2021; 8: 1593
  • 22 Staskun B. J. Org. Chem. 1966; 31: 2674
  • 23 Akula M, Thigulla Y, Davis C, Jha M. Org. Biomol. Chem. 2015; 13: 2600