Synthesis
DOI: 10.1055/a-2326-6363
paper
Boryl Radical Chemistry

Copper-Catalyzed Chemoselective Nitro Reduction

Thi Minh Thi Le
,
Mingbing Zhong
,
Philippe Jubault
,
T.M.T.L. thanks the Région Normandie (RIN Milliflux n°19E00566) and the Agence National pour la Recherche (ANR-CE07-0004-1) for a postdoctoral fellowship. M.Z. thanks the Chinese Scholarship Council (CSC) for a doctoral fellowship. T.M.T.L., M.Z., P.J. and T.P thank Normandie Université (NU), the Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (URN), the Institut National des Sciences Appliquées (INSA) Rouen Normandie, Labex SynOrg (ANR-11-LABX-0029), the XL-Chem Graduate School for Research (ANR-18-EURE-0020 XL CHEM) and Innovation Chimie Carnot (I2C) for support. T.P. thanks the Institut Universitaire de France (IUF) for support.


Abstract

The reduction of nitro compounds into the highly valuable anilines is reported using a Cu catalyst and B2Pin2. The reactions proceed under very mild conditions and showcase excellent functional group tolerance. This method is applied to a large panel of nitro derivatives, including biorelevant molecules and important synthetic intermediates, toward the synthesis of active pharmaceutical ingredients (APIs). This novel reaction manifold intends to provide a complementary approach to the existing portfolio of nitro-reduction methods.

Supporting Information



Publication History

Received: 05 April 2024

Accepted after revision: 14 May 2024

Accepted Manuscript online:
14 May 2024

Article published online:
28 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lawrence SA. Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
    • 1b McGrath NA, Brichacek M, Njardarson JT. A. J. Chem. Educ. 2010; 87: 1348
    • 1c The Chemistry of Anilines . Rappoport Z. John Wiley & Sons; Hoboken: 2007
    • 2a Hodgson HH. Chem. Rev. 1947; 40: 251
    • 2b Akhtar R, Zahoor AF, Rasool N, Ahmad M, Ali KG. Mol. Diversity 2022; 26: 1837

      For selected reviews, see:
    • 3a Orlandi M, Brenna D, Harms R, Jost S, Benaglia M. Org. Process Res. Dev. 2018; 22: 430
    • 3b Booth G. Nitro Compounds, Aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH; New York: 2000
    • 3c Kadam HK, Tilve SG. RSC Adv. 2015; 5: 83391
  • 4 Porter HK. In Organic Reactions . John Wiley & Sons; Hoboken: 2011: 455
  • 5 Wang Z. In Comprehensive Organic Name Reactions and Reagents . Wang Z. Wiley-VCH; Weinheim: 2010: 284

    • For selected examples, see:
    • 6a Epa K, Aakeroÿ CB, Desper J, Rayat S, Chandra KL, Cruz-Cabeza AJ. Chem. Commun. 2013; 49: 7929
    • 6b Jeanty M, Blu J, Suzenet F, Guillaumet G. Org. Lett. 2009; 11: 5142
    • 6c Zhang L, Fan J, Vu K, Hong K, Le Brazidec JY, Shi J, Biamonte M, Busch DJ, Lough RE, Grecko R, Ran Y, Sensintaffar JL, Kamal A, Lundgren K, Burrows FJ, Mansfield R, Timony GA, Ulm EH, Kasibhatla SR, Boehm MF. J. Med. Chem. 2006; 49: 5352

      For selected reviews, see:
    • 7a Tafesh A, Weiguny J. Chem. Rev. 1996; 96: 2035
    • 7b Blaser H.-U, Steiner H, Studer M. ChemCatChem 2009; 1: 210
    • 7c Romero AH. ChemistrySelect 2020; 5: 13054
  • 8 Formenti D, Ferretti F, Scharnagl FK, Beller M. Chem. Rev. 2019; 119: 2611

    • For selected examples, see:
    • 9a Giomi D, Ceccarelli J, Salvini A, Brandi A. ChemistrySelect 2020; 5: 10511
    • 9b Bhattacharjee A, Hosoya H, Ikeda H, Nishi K, Tsurugi H, Mashima K. Chem. Eur. J. 2018; 24: 11278
    • 9c Park KK, Oh CH, Joung WK. Tetrahedron Lett. 1993; 34: 7445
    • 9d McLaughlin MA, Barnes DM. Tetrahedron Lett. 2006; 47: 9095

      For selected examples, see:
    • 10a Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y. Org. Lett. 2016; 18: 2774
    • 10b Hosoya H, Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org. Lett. 2019; 21: 9812
    • 10c Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett 2018; 29: 1765
    • 10d Jang M, Lim T, Park BY, Han MS. J. Org. Chem. 2022; 87: 910
    • 10e Yin L, Huang G, Lin X, Song X, Chen Y, Yan T, Li M, Dang L. Org. Chem. Front. 2023; 10: 4623
    • 10f Yao W, Wang J, Lou Y, Wu H, Qi X, Yang J, Zhong A. Org. Chem. Front. 2021; 8: 4554
    • 10g Chen C, Lu C, Zhao B. J. Org. Chem. 2023; 88: 16391
    • 10h Wang B, Ma J, Ren H, Lu S, Xu J, Liang Y, Lu C, Yan H. Chin. Chem. Lett. 2022; 33: 2420
    • 10i Corkovic A, Chiarella T, Williams FJ. Org. Lett. 2023; 25: 8787

      For selected examples, see:
    • 11a Zhong M, Pannecoucke X, Jubault P, Poisson T. Chem. Eur. J. 2021; 27: 11818
    • 11b Zhong M, Gagné Y, Hope TO, Pannecoucke X, Frenette M, Jubault P, Poisson T. Angew. Chem. Int. Ed. 2021; 60: 14498
    • 11c Brégent T, Bouillon J.-P, Poisson T. Org. Lett. 2020; 22: 7688
    • 11d Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Chem. Eur. J. 2017; 23: 17318
    • 11e Bayle A, Cocaud C, Nicolas C, Martin OR, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 3787
    • 12a Aelterman M, Jubault P, Poisson T. Eur. J. Org. Chem. 2023; e202300063
    • 12b Aelterman M, Biremond T, Jubault P, Poisson T. Chem. Eur. J. 2022; 28: e2022002194
    • 12c Brégent T, Bouillon J.-P, Poisson T. Chem. Eur. J. 2021; 27: 13966
    • 12d Aelterman M, Sayes M, Jubault P, Poisson T. Chem. Eur. J. 2021; 27: 8277
  • 13 The deoxygenation step might occur in the presence of other boron derivatives.
    • 14a Ming W, Liu X, Friedrich A, Krebs J, Marder TB. Org. Lett. 2020; 22: 365
    • 14b Mao L, Szabo KJ, Marder TB. Org. Lett. 2017; 19: 1204
  • 15 Li W, Artz J, Broicher C, Junge K, Hartmann H, Besmehn A, Palkovits R, Beller M. Catal. Sci. Technol. 2019; 9: 157
  • 16 Sun H.-b, Ai Y, Li D, Tang Z, Shao Z, Liang Q. Chem. Eng. J. 2017; 314: 328
  • 17 Zhao X, Wu M, Liu Y, Cao S. Org. Lett. 2018; 20: 5564
  • 18 Xu Z.-B, Lu G.-P, Cai C. Catal. Commun. 2017; 99: 57
  • 19 Legnani L, Prina Cerai G, Morandi B. ACS Catal. 2016; 6: 8162
  • 20 Chen Y, Kamlet AS, Steinman JB, Liu DR. Nat. Chem. 2011; 3: 146
  • 21 Sorribes I, Liu L, Corma A. ACS Catal. 2017; 7: 2698
  • 22 Sharma U, Kumar N, Kumar Verna P, Kumar V, Singh B. Green Chem. 2012; 14: 2289
  • 23 Ham WS, Hillenbrand J, Jacq J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 532
  • 24 Cantillo D, Moghaddam MM, Kappe O. J. Org. Chem. 2013; 78: 4530
  • 25 Rousseaux S, Liégault B, Fagnou K. Chem. Sci. 2012; 3: 244
  • 26 Ida Y, Matsubara A, Nemoto T, Saito M, Hirayama S, Fujii H, Nagase H. Bioorg. Med. Chem. 2012; 20: 5810
  • 27 Kasparian AJ, Savarin C, Allgeier AM, Walker SD. J. Org. Chem. 2011; 76: 9841
  • 28 Loos P, Alex H, Hassfeld J, Lovis K, Platzek J, Steinfeld N, Hubner S. Org. Process. Res. Dev. 2016; 20: 452
  • 29 Jagadeesh RV, Banerjee D, Arockiam PB, Junge H, Junge K, Pohl M.-M, Radnik J, Bruckner A, Beller M. Green Chem. 2015; 17: 898