Synlett
DOI: 10.1055/a-2330-9955
letter

Copper-Promoted Dimerization of Benzyl Thiocyanates to Access Functionalized Bibenzyls

Sandeep Singh
,
Saroj Ranjan De
This work was supported by NIT, Uttarakhand and TEQIP-III.


Abstract

The synthesis of bibenzyl derivatives holds significance in organic chemistry due to their diverse pharmacological and synthetic applications. Herein, we report a novel copper-promoted dimerization reaction for the efficient synthesis of functionalized bibenzyls from benzyl thiocyanates. The coupling reaction proceeds under aerobic and mild conditions through a cascade C–S bond cleavage in one pot. Diverse substituents, including electron-withdrawing groups on the aryl ring, are well tolerated to afford the desired products in moderate to good yields. The developed protocol could be utilized to obtain the cross-coupling product from two different electron-deficient benzyl thiocyanates.

Supporting Information



Publication History

Received: 27 February 2024

Accepted after revision: 21 May 2024

Accepted Manuscript online:
21 May 2024

Article published online:
04 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Li C.-J. Chem. Rev. 2005; 105: 3095
  • 2 Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
  • 3 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
  • 4 Grirrane A, Corma A, García H. Science. 2008; 322: 1661
  • 5 Czaplik WM, Mayer M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2008; 48: 607
  • 6 Zhu X, Lin Y, San Martin J, Sun Y, Zhu D, Yan Y. Nat. Commun. 2019; 10: 2843
  • 7 Song Y, Hwang S, Gong P, Kim D, Kim S. Org. Lett. 2007; 10: 269
  • 8 Yamamura K, Ono S, Tabushi I. Tetrahedron Lett. 1988; 29: 1797
  • 9 Harrowven DC, Kostiuk SL. Nat. Prod. Rep. 2012; 29: 223
  • 10 Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
  • 11 He L, Su Q, Bai L, Li M, Liu J, Liu X, Zhang C, Jiang Z, He J, Shi J, Huang S, Guo L. Eur. J. Med. Chem. 2020; 204: 112530
  • 12 Barrett TN, Braddock DC, Monta A, Webb MR, White AJ. P. J. Nat. Prod. 2011; 74: 1980
  • 13 Liu J, Li B. Synth. Commun. 2007; 37: 3273
    • 14a Gharbi-Benarous J, Morales-Rios MS, Dana G. J. Org. Chem. 1984; 49: 2039
    • 14b Pan F.-F, Guo P, Huang X, Shu X.-Z. Synthesis 2021; 53: 3094
  • 15 Gilman H, Gorsich RG. J. Am. Chem. Soc. 1955; 77: 3134
    • 16a Cahiez G, Moyeux A, Buendia J, Duplais C. J. Am. Chem. Soc. 2007; 129: 13788
    • 16b Kim S.-H, Rieke RD. J. Org. Chem. 2000; 65: 2322
    • 16c Suh Y, Lee J.-s, Kim S.-H, Rieke RD. J. Organomet. Chem. 2003; 684: 20
  • 17 Ranu BC, Dutta P, Sarkar A. Tetrahedron Lett. 1998; 39: 9557
    • 18a Barrero AF, Herrador MM, Quilez del Moral JF, Arteaga P, Akssira M, El Hanbali F, Arteaga JF, Diéguez HR, Sánchez EM. J. Org. Chem. 2007; 72: 2251
    • 18b Qian Y, Li G, Zheng X, Huang Y.-Z. Synlett 1991; 489
    • 19a Girard P, Namy JL, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
    • 19b Liu Y, Zhang D, Xiao S, Qi Y, Liu S. Asian J. Org. Chem. 2019; 8: 858
  • 20 Sato K, Inoue Y, Mori T, Sakaue A, Tarui A, Omote M, Kumadaki I, Ando A. Org. Lett. 2014; 16: 3756
  • 21 Chen S.-Y, Zhang J, Li Y.-H, Wen J, Bian S.-Q, Yu X.-Q. Tetrahedron Lett. 2009; 50: 6795
  • 22 Levin VV, Agababyan DP, Struchkova MI, Dilman AD. Synthesis 2018; 50: 2930
  • 23 Lanterna AE, Elhage A, Scaiano JC. Catal. Sci. Technol. 2015; 5: 4336
  • 24 Li Y, Ren P, Zhang D, Qiao W, Wang D, Yang X, Wen X, Rummeli MH, Niemantsverdriet H, Lewis JP, Besenbacher F, Xiang H, Li Y, Su R. ACS Catal. 2021; 11: 4338
  • 25 Yang Q, Li X, Chen L, Han X, Wang FR, Tang J. Angew. Chem. Int. Ed. 2023; 62: e202307907
  • 26 Zhao X, Li M, Sun K, Xu Z, Tian L, Wang Y. Chem. Commun. 2023; 59: 13062
  • 27 Seong CM, Ansel AQ, Roberts CC. J. Org. Chem. 2023; 88: 3935
  • 28 Singh, S.; De, S. R. unpublished results.
  • 29 1,2-Diphenylethane (2a); Typical ProcedureBnSCN (1a) (0.67 mmol, 1 equiv), CuBr (0.33 mmol, 0.5 equiv), and Cs2CO3 (0.67 mmol, 1 equiv) were dissolved in dry MeCN (2 mL) in a 5 mL Teflon-screw-capped vial, and the mixture was stirred at 90 °C for 12 h under air. When the reaction was complete (TLC), the solvent was removed under reduced pressure, the residue was extracted with EtOAc (2 × 40 mL), and the extracts were washed with H2O (2 × 20 mL). The combined organic layer was washed with brine (2 × 15 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography [silica gel, PE–EtOAc (20:1)] to give a white solid; yield:105 mg (86%). 1H NMR (400 MHz, CDCl3): δ = 7.30 (dd, J = 6.8, 1.3 Hz, 4 H), 7.29–7.25 (m, 2 H), 7.25–7.22 (m, 4 H), 3.59 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 137.5 (2 C), 129.5 (4 C), 128.6 (4 C), 127.5 (2 C), 43.4 (2 C). These values agree with those reported in the literature.14b