CC BY-NC-ND 4.0 · Planta Med 2024; 90(13): 1023-1029
DOI: 10.1055/a-2388-7527
Biological and Pharmacological Activity
Original Papers

In Vitro Anti-inflammatory Effects of Larch Turpentine, Turpentine Oil, Eucalyptus Oil, and Their Mixture as Contained in a Marketed Ointment

Kurt Appel
1   VivaCell Biotechnology GmbH, Denzlingen, Germany
,
Thorsten Rose
1   VivaCell Biotechnology GmbH, Denzlingen, Germany
,
Christian Zimmermann
2   Cesra Arzneimittel GmbH & Co. KG, Baden-Baden, Germany
,
2   Cesra Arzneimittel GmbH & Co. KG, Baden-Baden, Germany
› Institutsangaben
K. A. and T. R. gratefully acknowledge an unrestricted grant by Cesra Arzneimittel GmbH & Co. KG that has allowed for carrying out all experiments.

Abstract

An ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1β, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1β, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.

Supporting Information



Publikationsverlauf

Eingereicht: 08. Februar 2024

Angenommen nach Revision: 01. August 2024

Artikel online veröffentlicht:
11. September 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Clebak KT, Malone MA. Skin infections. Prim Care 2018; 45: 433-454
  • 2 Ibler KS, Kromann CB. Recurrent furunculosis – challenges and management: A review. Clin Cosmet Investig Dermatol 2014; 7: 59-64
  • 3 Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol 2011; 11: 505-518
  • 4 Stulberg DL, Penrod MA, Blatny RA. Common bacterial skin infections. Am Fam Physician 2002; 66: 119-124
  • 5 Schöfer H, Bruns R, Effendy I, Hartmann M, Jappe U, Plettenberg A, Reimann H, Seifert H, Shah P, Sunderkotter C, Weberschock T, Wichelhaus TA, Nast A. Diagnosis and treatment of Staphylococcus aureus infections of the skin and mucous membranes. J Dtsch Dermatol Ges 2011; 9: 953-967
  • 6 Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol 2015; 185: 1518-1527
  • 7 Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol 2012; 34: 261-280
  • 8 Prabhakara R, Foreman O, De Pascalis R, Lee GM, Plaut RD, Kim SY, Stibitz S, Elkins KL, Merkel TJ. Epicutaneous model of community-acquired Staphylococcus aureus skin infections. Infect Immun 2013; 81: 1306-1315
  • 9 Tkaczyk C, Hamilton MM, Datta V, Yang XP, Hilliard JJ, Stephens GL, Sadowska A, Hua L, OʼDay T, Suzich J, Stover CK, Sellman BR. Staphylococcus aureus alpha toxin suppresses effective innate and adaptive immune responses in a murine dermonecrosis model. PLoS One 2013; 8: e75103
  • 10 Blaschke U, Beineke A, Klemens J, Medina E, Goldmann O. Induction of cyclooxygenase 2 by Streptococcus pyogenes is mediated by cytolysins. J Innate Immun 2017; 9: 587-597
  • 11 Appel K, Meiser P, Millán E, Collado JA, Rose T, Gras CC, Carle R, Muñoz E. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages. Fitoterapia 2015; 105: 73-82
  • 12 Fiebich BL, Muñoz E, Rose T, Weiss G, McGregor GP. Molecular targets of the antiinflammatory Harpagophytum procumbens (devilʼs claw): Inhibition of TNFα and COX-2 gene expression by preventing activation of AP-1. Phytother Res 2012; 26: 806-811
  • 13 Floris I, Appel K, Rose T, Lejeune B. 2LARTH®, a micro-immunotherapy medicine, exerts anti-inflammatory effects in vitro and reduces TNF-α and IL-1β secretion. J Inflamm Res 2018; 11: 397-405
  • 14 Borowczak J, Szczerbowski K, Maniewski M, Kowalewski A, Janiczek-Polewska M, Szylberg A, Marszałek A, Szylberg Ł. The role of inflammatory cytokines in the pathogenesis of colorectal carcinoma – Recent findings and review. Biomedicines 2022; 10: 1670
  • 15 Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol 2021; 11: 692142
  • 16 Barnes TM, Greive KA. Topical pine tar: History, properties and use as a treatment for common skin conditions. Australas J Dermatol 2017; 58: 80-85
  • 17 [Anonymous] Terebinthina Laricina. In: Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Schulz V. editors Hagers Handbuch der Drogen und Arzneistoffe. Berlin: Springer; 2004
  • 18 [Anonymous] Terebinthinae Aetheroleum Rectificatum (Gereinigtes Terpentinöl). In: Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Schulz V. editors Hagers Handbuch der Drogen und Arzneistoffe. Berlin: Springer; 2004
  • 19 [Anonymous] Eucalypti aetheroleum (Eucalyptusöl). In: Blaschek W, Ebel S, Hackenthal E, Holzgrabe U, Keller K, Reichling J, Schulz V. editors Hagers Handbuch der Drogen und Arzneistoffe. Berlin: Springer; 2004
  • 20 Fuchs-Algrim J, Lorenz H, Zimmermann C, Günnewich N, Schwarzensteiner I, Kaiser PM, Tronnier H. Turpentine ointment in bacterial skin infections: A randomized, placebo-controlled, double-blind clinical trial. Complement Med Res 2023; 30: 56-62
  • 21 Görne RC, Günnewich N, Huber H, Wallmen B, Zimmermann C. Turpentine ointment for the treatment of folliculitis: An open, prospective, randomized, placebo- and comparator-controlled multicenter trial. Skin Pharmacol Physiol 2023; 36: 259-266
  • 22 Kommission E. (BGA/BfArM) Terebinthina Laricina (Lärchenterpentin). Köln: Bundesanzeiger; 1984: 228
  • 23 Mercier B, Prost J, Prost M. The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): A review. Int J Occup Med Environ Health 2009; 22: 331-342
  • 24 Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006; 77: 279-285
  • 25 Stojković D, Soković M, Glamoclija J, Dzamic A, Ristić M, Fahal A, Khalid S, Đuić I, Petrović S. Susceptibility of three clinical isolates of Actinomadura madurae to α-pinene, the bioactive agent of Pinus pinaster turpentine oil. Arch Biol Sci 2008; 60: 697-701
  • 26 Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata . Lett Appl Microbiol 2004; 39: 60-64
  • 27 Chaiwut R, Kasinrerk W. Very low concentration of lipopolysaccharide can induce the production of various cytokines and chemokines in human primary monocytes. BMC Res Notes 2022; 15: 42
  • 28 Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001; 13: 85-94
  • 29 Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31: 379-446
  • 30 Fayez S, Gamal El-Din MI, Moghannem SA, Azam F, El-Shazly M, Korinek M, Chen YL, Hwang TL, Fahmy NM. Eucalyptus-derived essential oils alleviate microbes and modulate inflammation by suppressing superoxide and elastase release. Front Pharmacol 2023; 14: 1218315
  • 31 Mehta H, Angsana J, Bissonnette R, Muñoz-Elías EJ, Sarfati M. Inflammatory skin disorders: Monocyte-derived cells take center stage. Front Immunol 2021; 12: 691806
  • 32 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol 2007; 127: 514-525
  • 33 Qabaha K, Ras SA, Abbadi J, Al-Rimawi F. Anti-inflammatory activity of Eucalyptus spp. and Pistacia lientiscus leaf extracts. Afr J Tradit Complement Altern Med 2016; 13: 1-6
  • 34 Horváth A, Pandur E, Sipos K, Micalizzi G, Mondello L, Böszörményi A, Birinyi P, Horváth G. Anti-inflammatory effects of lavender and eucalyptus essential oils on the in vitro cell culture model of bladder pain syndrome using T24 cells. BMC Complement Med Ther 2022; 22: 119
  • 35 Yang J, Choi WS, Kim KJ, Eom CD, Park MJ. Investigation of active anti-Inflammatory constituents of essential oil from Pinus koraiensis (Sieb. et Zucc.) wood in LPS-stimulated RBL-2H3 cells. Biomolecules 2021; 11: 817
  • 36 Fan B, Dun SH, Gu JQ, Guo Y, Ikuyama S. Pycnogenol attenuates the release of proinflammatory cytokines and expression of perilipin 2 in lipopolysaccharide-stimulated microglia in part via inhibition of NF-κB and AP-1 activation. PLoS One 2015; 10: e0137837
  • 37 Pferschy-Wenzig EM, Kunert O, Presser A, Bauer R. In vitro anti-inflammatory activity of larch (Larix decidua L.) sawdust. J Agric Food Chem 2008; 56: 11688-11693
  • 38 Batista JVC, Uecker A, Holandino C, Boylan F, Maier J, Huwyler J, Baumgartner S. A scoping review on the therapeutic potential of resin from the species Larix decidua Mill. [Pinaceae] to treat ulcerating wounds. Front Pharmacol 2022; 13: 895838
  • 39 Floris I, Rose T, Rojas JAC, Appel K, Roesch C, Lejeune B. Pro-inflammatory cytokines at ultra-low dose exert anti-inflammatory effect in vitro: A possible mode of action involving sub-micron particles?. Dose Response 2020; 18: 1559325820961723
  • 40 Ogawa Y, Muto Y, Kinoshita M, Shimada S, Kawamura T. Neutrophil extracellular traps in skin diseases. Biomedicines 2021; 9: 1888
  • 41 Loew D, Kaszkin M. Approaching the problem of bioequivalence of herbal medicinal products. Phytother Res 2002; 16: 705-711
  • 42 Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009; 16: 97-110
  • 43 Wagner U. [Phytotherapy research. A thyme-ivy combination using synergy effects in action and research]. Pharm Unserer Zeit 2009; 38: 83-85
  • 44 Fuss IJ, Kanof ME, Smith PD, Zola H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol 2009; Chapter 7: 7.1.1-7.1.8
  • 45 Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 2012; 12: 12347-12360
  • 46 Günnewich N, Rose T, Koll K, Appel K. Magen-Darm-Entoxin® shows anti-inflammatory effects in vitro . Complement Med Res 2021; 28: 473-477
  • 47 Fiebich BL, Heinrich M, Hiller KO, Kammerer N. Inhibition of TNF-alpha synthesis in LPS-stimulated primary human monocytes by Harpagophytum extract SteiHap 69. Phytomedicine 2001; 8: 28-30