Subscribe to RSS

DOI: 10.1055/a-2501-3442
Photocatalytic Defluorinative Borylation of α-(Trifluoromethyl)styrenes
C.S.B. thanks the Marie Curie Actions for a Fellowship (B-STRAIN 101102819).

For Tatì
Abstract
The defluorinative radical borylation of α-(trifluoromethyl)styrenes is a novel access to diverse difluoroalkene-aminoboranes in good yields. Using the boryl radical precursor borobetaine gives the key boryl radical that reacts with the α-(trifluoromethyl)styrene forming the initial C–B bond. Then a radical-polar crossover mechanism releases fluoride to provide a difluoroalkene product bearing the aminoborane synthetic handle. The difluoroalkene motif is of interest as a potent carbonyl bioisostere that has been shown to enhance biological activity and reactivity. The presence of the aminoborane moiety allows further functionalization such as Suzuki–Miyaura cross-coupling of the borylated products, which is demonstrated using complex aryl bromides. Various post-functionalizations demonstrate difluoroalkene-aminoboranes to be valuable building blocks for the construction of complex, high-value molecules.
Key word
boryl radicals - photoredox catalysis - radical-polar crossover - difluoroalkenes - borylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2501-3442.
- Supporting Information
Publication History
Received: 25 September 2024
Accepted after revision: 28 November 2024
Accepted Manuscript online:
12 December 2024
Article published online:
20 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 2 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3 Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 4 Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 5 Leriche C, He X, Chang C.-wT, Liu H.-w. J. Am. Chem. Soc. 2003; 125: 6348
- 6 Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J.-P. J. Fluorine Chem. 2006; 127: 637
- 7 Zhao X, Li C, Wang B, Cao S. Tetrahedron Lett. 2019; 60: 129
- 8 Liu Y, Zhou Y, Zhao Y, Qu J. Org. Lett. 2017; 19: 946
- 9 Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
- 10 Yan S, Yu W, Zhang J, Fan H, Lu Z, Zhang Z, Wang T. J. Org. Chem. 2022; 87: 1574
- 11 Yue F, Dong J, Liu Y, Wang Q. Org. Lett. 2021; 23: 7306
- 12 Walton JC, Brahmi MM, Fensterbank L, Lacôte E, Malacria M, Chu Q, Ueng S.-H, Solovyev A, Curran DP. J. Am. Chem. Soc. 2010; 132: 2350
- 13 Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005
- 14 Blakemore DC. Suzuki–Miyaura Coupling . In Synthetic Methods in Drug Discovery, Vol. 1. Blakemore DC, Doyle PM, Fobian YM. Royal Society of Chemistry; Cambridge: 2016: 1-69
- 15 Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C–C Bonds (Nobel Lecture): Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 16 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 17 Buettner CS, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. J. Am. Chem. Soc. 2024; 146: 24042
- 18 Kim JH, Constantin T, Simonetti M, Llaveria J, Sheikh NS, Leonori D. Nature 2021; 595: 677
- 19 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
- 20 Sim BA, Griller D, Wayner DD. M. J. Am. Chem. Soc. 1989; 111: 754
- 21 Berger AL, Donabauer K, König B. Chem. Sci. 2019; 10: 10991
- 22 Askey HE, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. J. Am. Chem. Soc. 2021; 143: 15936
- 23 Buettner CS, Schnürch M, Bica-Schröder K. J. Org. Chem. 2022; 87: 11042
- 24 Pan S, Chen F, Zhang Y, Shao L, Chu L. Angew. Chem. Int. Ed. 2023; 62: e202305426
- 25 Konno T, Chae J, Tanaka T, Ishihara T, Yamanaka H. Chem. Commun. 2004; 690
- 26 Konno T, Chae J, Tanaka T, Ishihara T, Yamanaka H. J. Fluorine Chem. 2006; 127: 36
- 27 Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J. Med. Chem. 2019; 62: 5628
- 28 Grygorenko OO, Volochnyuk DM, Vashchenko BV. Eur. J. Org. Chem. 2021; 2021: 6478
- 29 Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
- 30 Kutchukian PS, Dropinski JF, Dykstra KD, Li B, DiRocco DA, Streckfuss EC, Campeau L.-C, Cernak T, Vachal P, Davies IW, Krska SW, Dreher SD. Chem. Sci. 2016; 7: 2604