Subscribe to RSS
DOI: 10.1055/a-2531-6862
Sodium Hypochlorite Pentahydrate as an Environmentally Benign Oxidizing Agent: Effective Synthesis of Carboxylic Acids from Primary Alcohols and Sulfones from Sulfides

Abstract
The oxidation of primary alcohols, sulfides, and trifluoromethyl sulfides using sodium hypochlorite pentahydrate crystals as the oxidizing agent was investigated in detail. The optimal conditions for oxidation to the corresponding carboxylic acids, sulfones, and trifluoromethyl sulfones in high yields were determined. At a reaction medium pH of 9–10, primary alcohols in ethyl acetate and water in the presence of TEMPO or AZADOL were oxidized to aliphatic and aromatic carboxylic acids in high yields. Sulfides were oxidized to sulfones in high yields by using toluene as the solvent, and trifluoromethyl sulfides were oxidized to give the corresponding sulfones in benzotrifluoride in the presence of trifluoroacetic acid.
Key words
oxidation - sodium hypochlorite pentahydrate - TEMPO - primary alcohols - carboxylic acids - sulfides - sulfonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2531-6862.
- Supporting Information
Publication History
Received: 26 November 2024
Accepted after revision: 03 February 2025
Accepted Manuscript online:
03 February 2025
Article published online:
11 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Smith MB. March’s Advanced Organic Chemistry, 8th ed. Wiley; Hoboken: 2020: 1447
- 1b Hansen EC, Perkins R, Ripin DH. B. In Practical Synthetic Organic Chemistry, 2nd ed. Caron S. Wiley; Hoboken: 2020: 513
- 2a Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. ChemSusChem 2021; 14: 4878
- 2b Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH. Phosphorus, Sulfur Silicon Relat. Elem. 2020; 195: 181
- 2c Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
- 3a Kirihara M, Okada T, Asawa T, Sugiyama Y, Kimura Y. J. Synth. Org. Chem., Jpn. 2020; 78: 11
- 3b Kirihara M, Okada T, Sugiyama Y, Akiyoshi M, Matsunaga T, Kimura Y. Org. Process Res. Dev. 2017; 21: 1925
- 3c Okada T, Asawa T, Sugiyama Y, Kirihara M, Iwai T, Kimura Y. Synlett 2014; 25: 596
- 3d Okada T, Asawa T, Sugiyama Y, Iwai T, Kirihara M, Kimura Y. Tetrahedron 2016; 72: 2818
- 3e Okada T, Matsumuro H, Kitagawa S, Iwai T, Yamazaki K, Kinoshita Y, Kimura Y, Kirihara M. Synlett 2015; 26: 2547
- 3f Kirihara M, Osugi R, Saito K, Adachi K, Yamazaki K, Matsushima R, Kimura Y. J. Org. Chem. 2019; 84: 8330
- 3g Hakuto N, Saito K, Kirihara M, Kotsuchibashi Y. Polym. Chem. 2020; 11: 2469
- 3h Kirihara M, Suzuki K, Nakakura K, Saito K, Nakamura R, Tujimoto K, Sakamoto Y, Kikkawa Y, Shimazu H, Kimura Y. J. Fluorine Chem. 2021; 243: 109719
- 3i Kirihara M, Adachi K, Sakamoto Y, Tujimoto K, Yamahara S, Matsushima R, Namba Y, Sato K, Kamada T, Kimura Y, Takizawa S. Heterocycles 2021; 103: 699
- 3j Kirihara M, Yamahara S, Okada T, Matsumuro H, Kinoshita Y, Kitajima A, Takamura Y, Odagiri T, Asawa T, Sugiyama Y, Kimura Y. Synthesis 2022; 54: 4120
- 3k Kirihara M, Sakamoto Y, Tanaka T, Kawai T, Okada T, Kimura Y, Takizawa S. Synthesis 2024; 56: 1873
- 3l Yamahara S, Salem MS. H, Kawai T, Watanabe M, Sakamoto Y, Okada T, Kimura Y, Takizawa S, Kirihara M. ACS Sustainable Chem. Eng. 2024; 12: 12135
- 4a Miller SA, Bisset KA, Leadbeater NE, Eddya NA. Eur. J. Org. Chem. 2019; 1413
- 4b Porcheddu A, Delogu F, De Luca LD, Fattuoni C, Colacino E. Beilstein J. Org. Chem. 2019; 15: 1786
- 4c Uyanik M, Nishioka K, Kondo R, Ishihara K. Nat. Chem. 2020; 12: 353
- 4d Zhu Y, Wang J, Wu D, Yu W. Asian J. Org. Chem. 2020; 9: 1650
- 4e Matsuki S, Kayano H, Takada J, Kono H, Fujisawa S, Saito T, Isogai A. ACS Sustainable Chem. Eng. 2020; 8: 17800
- 4f Umeda T, Minakata S. RSC Adv. 2021; 11: 22120
- 4g Miyamoto K, Okada T, Toyama T, Imamura S, Uchiyama M. Heterocycles 2021; 103: 694
- 4h Miyamoto K, Watanabe Y, Takagi T, Okada T, Toyama T, Imamura S, Uchiyama M. ARKIVOC 2021; (vii): 1
- 4i Kõllo M, Kasari M, Kasari V, Pehk T, Järving I, Lopp M, Jõers A, Kanger T. Beilstein J. Org. Chem. 2021; 17: 581
- 4j Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
- 4k Testen Z, Jereb M. Org. Biomol. Chem. 2024; 22: 2012
- 4l Uyanik M, Sasakura N, Kuwahata M, Ejima Y, Ishihara K. Chem. Lett. 2015; 44: 381
- 4m Hirashita T, Sugihara Y, Ishikawa S, Naito Y, Matsukawa Y, Araki S. Synlett 2018; 29: 2404
- 4n Watanabe A, Miyamoto K, Okada T, Asawa T, Uchiyama M. J. Org. Chem. 2018; 83: 14262
- 5a Bobbitt JM. TCIMAIL, No. 146. Tokyo Chemical Industry Ltd; Tokyo: 2010: 2
- 5b Bailey WF, Bobbitt JM, Wiberg KB. J. Org. Chem. 2007; 72: 4504
- 6 Xu X, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 7a Harris JF. Jr. J. Org. Chem. 1967; 32: 2063
- 7b Tordeux M, Francese C, Wakselman C. J. Fluorine Chem. 1989; 43: 27
- 7c Langlois BR, Billard T, Mulatier J.-C, Yezeguelian C. J. Fluorine Chem. 2007; 128: 851
- 7d Hellmann G, Hack A, Thiemermann E, Luche O, Raabe G, Gais H.-J. Chem. Eur. J. 2013; 19: 3869
- 8 Li XL, Zhang K, Jiang JL, Zhu R, Wu WP, Deng J, Fu Y. Green Chem. 2018; 20: 362
- 9 Badger GM, Rodda HJ, Sasse WH. F. J. Chem. Soc. 1954; 4162
- 10 Shimada Y, Hattori K, Tada N, Miura T, Itoh A. Synthesis 2013; 45: 2684
- 11 Gupta MK, Li Z, Snowden TS. J. Org. Chem. 2012; 77: 4854
- 12 Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Cámara M, Truman A, Chhabra SR, Emsley J, Williams P. PLoS Pathog. 2013; 9: e1003508
- 13 Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. Green Chem. 2016; 18: 2323
- 14 Yoshida M, Katagiri Y, Zhu WB, Shishido K. Org. Biomol. Chem. 2009; 7: 4062
- 15 Li HX, Yu ZX. Org. Lett. 2024; 26: 3458
- 16 Doni E, O’Sullivan S, Murphy JA. Angew. Chem. Int. Ed. 2013; 52: 2239
- 17 Boruah JJ, Das SP, Ankireddy SR, Gogoi SR, Islam NS. Green Chem. 2013; 15: 2944
- 18 Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
- 19 Zhao J, Niu S, Jiang X, Jiang Y, Zhang X, Sun T, Ma D. J. Org. Chem. 2018; 83: 6589
- 20 Jereb M. Green Chem. 2012; 14: 3047
- 21 Gaston V, Chhan A, Jacques M. J. Heterocycl. Chem. 1978; 15: 1361
- 22 Yang J, Wang L, Lv Y, Li N, An Y, Gao S. Tetrahedron Lett. 2018; 59: 156
- 23 Pospisil J, Sato H. J. Org. Chem. 2011; 76: 2269
- 24 Liu NW, Liang S, Margraf N, Shaaban S, Luciano V, Drost M, Manolikakes G. Eur. J. Org. Chem. 2018; 1208
- 25 Jain SL, Sain B. Appl. Catal., A 2006; 301: 259
- 26 Venier CG, Squires TG, Chen YY, Smith BF. J. Org. Chem. 1982; 47: 3773
- 27 Yang C, Jin Q, Zhang H, Liao J, Zhu J, Yu B, Deng J. Green Chem. 2009; 11: 1401
- 28 Jerchel D, Dippelhofer L, Renner D. Chem. Ber. 1954; 87: 947
- 29 Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJ. D, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2019; 58: 4552
- 30 Zhang K, Xu XH, Qing FL. J. Org. Chem. 2015; 80: 7658
- 31 Zhang L, Du W, Wu J, Yang R, E X.-t.-f, Wang J, Xia Z. Org. Lett. 2024; 26: 9413
- 32 Nilkanth GA, Bhooshan K, Hyeongjin C. Bull. Korean Chem. Soc. 2013; 34: 1275
For selected reviews, see:
For our synthetic reactions using NaOCl·5H2O, see:
For selected recent synthetic reactions using NaOCl·5H2O, see:
Bobbitt et al. proposed a novel reaction mechanism for the TEMPO-mediated oxidation of alcohols under neutral or acidic conditions. It is generally assumed that TEMPO functions in a similar manner in this reaction. See: