Subscribe to RSS
DOI: 10.1055/a-2545-1192
Artificial Intelligence for the Detection of Diabetic Retinopathy
Article in several languages: deutsch | English
Abstract
Screening and timely treatment can avoid the majority of severe vision loss and blindness from diabetic retinopathy. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might reduce the challenges of systematic screening. The German National Care Guideline recommends that individuals with diabetes receive annual or biennial eye examinations to detect treatable DR. Efficient and comprehensive screening of the growing diabetic population requires more and more resources. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might help in coping with the immense screening burden. Many of these AI algorithms have achieved good sensitivity and specificity for detecting treatable DR, as compared to human graders; however, many important challenges remain, such as acceptance, cost-effectiveness, liability issues, IT security, and reimbursement. AI-supported DR screening has so far only been used to a limited extent, even in countries with a developed digital infrastructure. These questions must be addressed before AI-based DR screening can be implemented on a large scale into clinical practice. This overview presents key concepts in development and currently approved AI applications for DR screening.
-
Bei richtiger Anwendung kann ein KI-basiertes Screening-Tool dazu beitragen, unnötige medizinische Untersuchungen zu reduzieren und die Verfügbarkeit medizinischer Versorgung auf die Patienten zu konzentrieren, die sie am dringendsten benötigen.
-
Die ordnungsgemäße Implementierung von KI-basiertem DR-Screening stellt vielerorts noch eine technische und logistische Herausforderung dar, hat jedoch enormes Potenzial, die Sehfähigkeit vieler Menschen zu erhalten. Die mangelnde Transparenz hinsichtlich der Entscheidungsfindung von KI-Modellen stellt jedoch eine essenzielle Limitation für deren praktische Nutzung dar.
-
KI-Modelle können vielseitig eingesetzt werden und bieten insbesondere in Regionen mit einem Mangel an Fachärzten wertvolle Unterstützung zur Etablierung möglicher Triage-Systeme, um die Patientenversorgung zu strukturieren. Die Augenheilkunde als Disziplin mit einem starken Fokus auf optische Verfahren und stetiger Weiterentwicklung nicht invasiver Bildgebungstechniken bietet zahlreiche potenzielle Anwendungsbereiche für automatische oder semiautomatische KI-Modelle.
-
When used properly, an AI-based screening tool can help reduce unneeded medical examinations and focus health care on the patients who need it most urgently.
-
Implementing AI-based DR screening properly is still a technical and logistical challenge in many places, but it has huge potential to sustain the eyesight of many people. However, the lack of transparency in AI modelsʼ decision-making process represents a significant limitation for their practical use.
-
AI models can be used in a variety of ways and offer valuable support for establishing possible triage systems to structure patient care, especially in regions with a shortage of specialists. Ophthalmology, a field with a strong focus on optic procedures and continuous development of non-invasive imaging techniques, offers numerous potential applications for automated or semi-automated AI modelling.
Publication History
Received: 06 October 2024
Accepted: 12 February 2025
Article published online:
02 June 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References/Literatur
- 1 International Diabetes Federation. DF Diabetes Atlas 2021. 10th ed. https://diabetesatlas.org/atlas/tenth-edition/ Stand: 25.03.2025
- 2 Fong DS, Aiello L, Gardner TW. et al. Retinopathy in Diabetes. Diabetes Care 2004; 27: s84-s87
- 3 Teo ZL, Tham YC, Yu M. et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021; 128: 1580-1591
- 4 Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes. 15.05.2023. Langfassung – Version 3.0. AWMF-Register-Nr. nvl-001. https://register.awmf.org/assets/guidelines/nvl-001l_S3_Typ-2-Diabetes_2023-05.pdf Stand: 25.03.2025
- 5 Ferris FL3rd. How Effective Are Treatments for Diabetic Retinopathy?. JAMA 1993; 269: 1290-1291
- 6 Kreft D, McGuinness MB, Doblhammer G. et al. Diabetic retinopathy screening in incident diabetes mellitus type 2 in Germany between 2004 and 2013 – A prospective cohort study based on health claims data. PLoS One 2018; 13: e0195426
- 7 Spital G, Faatz H. Diabetic Retinopathy – a Common Disease. Klin Monbl Augenheilkd 2023; 240: 1060-1070
- 8 Whitestone N, Nkurikiye J, Patnaik JL. et al. Feasibility and acceptance of artificial intelligence-based diabetic retinopathy screening in Rwanda. Br J Ophthalmol 2024; 108: 840-845
- 9 Abràmoff MD, Lavin PT, Birch M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39
- 10 Ting DSW, Cheung CY, Lim G. et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA 2017; 318: 2211-2223
- 11 Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017; 124: 962-969
- 12 Gulshan V, Peng L, Coram M. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410
- 13 Rajesh AE, Davidson OQ, Lee CS. et al. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes Care 2023; 46: 1728-1739
- 14 Li F, Wang Y, Xu T. et al. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye (Lond) 2022; 36: 1433-1441
- 15 Joseph S, Selvaraj J, Mani I. et al. Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis. Am J Ophthalmol 2024; 263: 214-230
- 16 Nørgaard MF, Grauslund J. Automated Screening for Diabetic Retinopathy – A Systematic Review. Ophthalmic Res 2018; 60: 9-17
- 17 Uy H, Fielding C, Hohlfeld A. et al. Diagnostic test accuracy of artificial intelligence in screening for referable diabetic retinopathy in real-world settings: A systematic review and meta-analysis. PLOS Global Public Health 2023; 3: e0002160
- 18 Roser P, Grohmann C, Aberle J. et al. Evaluation der Implementierung eines zugelassenen Künstliche-Intelligenz-Systems zur Erkennung der diabetischen Retinopathie. Diabetologie und Stoffwechsel 2021; 16: 402-408
- 19 van der Heijden AA, Abramoff MD, Verbraak F. et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol 2018; 96: 63-68
- 20 Paul S, Tayar A, Morawiec-Kisiel E. et al. [Use of artificial intelligence in screening for diabetic retinopathy at a tertiary diabetes center]. Ophthalmologie 2022; 119: 705-713
- 21 Bellemo V, Lim ZW, Lim G. et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 2019; 1: e35-e44
- 22 Xie Y, Nguyen QD, Hamzah H. et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health 2020; 2: e240-e249
- 23 Skevas C, de Olaguer NP, Lleó A. et al. Implementing and evaluating a fully functional AI-enabled model for chronic eye disease screening in a real clinical environment. BMC Ophthalmol 2024; 24: 51
- 24 Browning DJ, Stewart MW, Lee C. Diabetic macular edema: Evidence-based management. Indian J Ophthalmol 2018; 66: 1736-1750
- 25 Mackenzie S, Schmermer C, Charnley A. et al. SDOCT Imaging to Identify Macular Pathology in Patients Diagnosed with Diabetic Maculopathy by a Digital Photographic Retinal Screening Programme. PLoS One 2011; 6: e14811
- 26 Grauslund J, Andersen N, Andresen J. et al. Evidence-based Danish guidelines for screening of diabetic retinopathy. Acta Ophthalmol 2018; 96: 763-769
- 27 Kermany DS, Goldbaum M, Cai W. et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018; 172: 1122-1131.e9
- 28 Ye X, Gao K, He S. et al. Artificial Intelligence-Based Quantification of Central Macular Fluid Volume and VA Prediction for Diabetic Macular Edema Using OCT Images. Ophthalmol Ther 2023; 12: 2441-2452
- 29 Zhang Y, Xu F, Lin Z. et al. Prediction of Visual Acuity after anti-VEGF Therapy in Diabetic Macular Edema by Machine Learning. J Diabetes Res 2022; 2022: 5779210
- 30 Quek TC, Takahashi K, Kang HG. et al. Predictive, preventive, and personalized management of retinal fluid via computer-aided detection app for optical coherence tomography scans. EPMA J 2022; 13: 547-560
- 31 Tan TE, Wong TY, Ting DSW. Artificial Intelligence for Prediction of Anti-VEGF Treatment Burden in Retinal Diseases: Towards Precision Medicine. Ophthalmol Retina 2021; 5: 601-603
- 32 Bajka A, Bacci T, Wiest MRJ. et al. Feasibility and Clinical Utility of Wide-Field Optical Coherence Tomography Angiography Compared to Ultrawide-Field Fluorescein Angiography in Patients with Diabetic Retinopathy. Klin Monbl Augenheilkd 2023; 240: 490-495
- 33 Wen J, Liu D, Wu Q. et al. Retinal image-based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives. VIEW 2023; 4: 20220070
- 34 Zhang K, Liu X, Xu J. et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nat Biomed Eng 2021; 5: 533-545
- 35 Schubert M. The Correlation between Diabetes Mellitus and Neurodegenerative Diseases. Klin Monbl Augenheilkd 2023; 240: 130-135
- 36 Kopf D, Frölich L. Risk of incident Alzheimerʼs disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 2009; 16: 677-685
- 37 Chatterjee S, Peters SA, Woodward M. et al. Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care 2016; 39: 300-307
- 38 Zhang J, Chen C, Hua S. et al. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimerʼs disease. Diabetes Res Clin Pract 2017; 124: 41-47
- 39 Huang Y, Wang S, Cai C. et al. Retinal vascular density as a potential biomarker of diabetic cerebral small vessel disease. Diabetes Obes Metab 2024; 26: 1789-1798
- 40 Majimbi M, McLenachan S, Nesbit M. et al. In vivo retinal imaging is associated with cognitive decline, blood-brain barrier disruption and neuroinflammation in type 2 diabetic mice. Frontiers in Endocrinology 2023; 14
- 41 Ciudin A, Simó-Servat O, Hernández C. et al. Retinal Microperimetry: A New Tool for Identifying Patients With Type 2 Diabetes at Risk for Developing Alzheimer Disease. Diabetes 2017; 66: 3098-3104
- 42 Liang M, Chen X, Xue F. et al. Diffusion-weighted imaging of injuries to the visual centers of the brain in patients with type 2 diabetes and retinopathy. Exp Ther Med 2017; 14: 1153-1156
- 43 Grzybowski A, Singhanetr P, Nanegrungsunk O. et al. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmol Ther 2023; 12: 1419-1437
- 44 Tufail A, Rudisill C, Egan C. et al. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology 2017; 124: 343-351
- 45 [Anonym] Art. 22 DSGVO: Automatisierte Entscheidungen im Einzelfall einschließlich Profiling. https://dsgvo-gesetz.de/art-22-dsgvo/ Stand: 25.03.2025
- 46 McMaster University, Evidencde Prime Inc.. GRADEpro GDT: GRADEpro Guideline Development Tool 2022. https://gdt.gradepro.org/app/ Stand: 25.03.2025
- 47 Poschkamp B, Stahl A. Application of deep learning algorithms for diabetic retinopathy screening. Ann Transl Med 2022; 10: 1298
- 48 Lundeen EA, Andes LJ, Rein DB. et al. Trends in Prevalence and Treatment of Diabetic Macular Edema and Vision-Threatening Diabetic Retinopathy Among Medicare Part B Fee-for-Service Beneficiaries. JAMA Ophthalmol 2022; 140: 345-353
- 49 Wintergerst MWM, Bejan V, Hartmann V. et al. Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis. Ophthalmic Epidemiol 2022; 29: 286-295
- 50 Zech H, Hünefeld IC. Einsatz von KI in der Medizin: Haftung und Versicherung. Medizinrecht 2023; 41: 1-8
- 51 Wehkamp K, Krawczak M, Schreiber S. The Quality and Utility of Artificial Intelligence in Patient Care. Dtsch Arztebl Int 2023; 120: 463-469
- 52 Cabitza F, Campagner A, Balsano C. Bridging the “last mile” gap between AI implementation and operation: “data awareness” that matters. Ann Transl Med 2020; 8: 501
- 53 Arcadu F, Benmansour F, Maunz A. et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med 2019; 2: 92