Subscribe to RSS
DOI: 10.1055/a-2545-3249
The Scope and Prospects of Photoelectrochemistry for C-H Bond Activation Using Semiconductor Photoanodes
The financial support from ANRF (Anusandhan National Research Foundation), India (project CRG/2023/002395) is acknowledged.

Abstract
The high activation energy needed for C–H bond activation leads to the requirement for harsh reaction conditions, specially designed catalysts, additives, and terminal oxidants. Tremendous progress has been achieved in C–H bond activation using thermocatalysis, photoredox, electrocatalysis, and electrophotocatalysis methods. Recently, photoelectrochemistry using semiconductor photoanodes has been explored for C–H bond activation, and the approach has certain advantages and challenges. The use of both light and applied potential makes C–H bond activation facile compared to the electrochemical or photoredox reactions. Further, high atom economy, low side product and waste formation, mild reaction conditions, and high energy efficiency associated with photoelectrochemistry make it more convenient than the other processes. However, the design of effective photoanodes using a suitable choice of semiconductor and cocatalyst is crucial for improving the charge-transfer dynamics, reaction rates, and selectivity for the desired products. Although the field is relatively new, a significant number of studies have demonstrated its versatility and robustness for different types of C–H bond activation. Herein, we describe the scope of photoelectrochemistry for C–H bond activation and discuss its future and potential for large-scale organic synthesis.
1 Introduction
2 Types of C–H Activation
3 Importance of Photoelectrochemical Approaches
4 Improvement of the Activity
5 Control over the Selectivity
6 Photoanode Design
7 The Effect of Cocatalysts
8 The Effect of Charge Collectors
9 The Effect of Redox Mediators
10 Conclusions and Perspectives
Key words
C–H bond activation - hydrogen atom transfer - photoelectrochemistry - photoanode design - selectivityPublication History
Received: 30 January 2025
Accepted after revision: 24 February 2025
Accepted Manuscript online:
24 February 2025
Article published online:
10 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 2 Chai Z. Angew. Chem. Int. Ed. 2024; 63: 202316444
- 3 Teng Z, Zhang Z, Yang H, Zhang Q, Ohno T. Sci. Adv. 2024; 10: 5432
- 4 Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
- 5 Hu X, Cheng-Sánchez I, Kong W, Molander GA, Nevado C. Nat. Catal. 2024; 7: 655
- 6 Cao X, Han T, Peng Q, Chen C, Li Y. Chem. Commun. 2020; 56: 13918
- 7 Tateno H, Iguchi S, Miseki Y, Sayama K. Angew. Chem. Int. Ed. 2018; 57: 11238
- 8 Singh P, Konig B, Shaikh AC. JACS Au 2024; 4: 3340
- 9 Xu R, Lu W, Toan S, Zhou Z, Russell CK, Sun Z, Sun Z. J. Mater. Chem. A 2021; 9: 24241
- 10 Li F, Wang B, Chen X, Zeng W, Sun R, Liu X, Ren Z, Yang X, Fan H, Guo Q. J. Phys. Chem. C 2022; 126: 11936
- 11 Li T, Zhang PL, Dong LZ, Lan YQ. Angew. Chem. Int. Ed. 2024; 63: 202318180
- 12 Schnepel C, Sewald N. Chem. Eur. J. 2017; 23: 12064
- 13 Wang J, Li S, Yang C, Gao H, Zuo L, Guo Z, Yang P, Jiang Y, Li J, Wu L, Tang Z. Nat. Commun. 2024; 15: 6907
- 14 Masoumi Z, Tayebi M, Zaib Q, Masoumi SA, Seo B, Lim C, Yu S, Kim H, Kyung D. Coord. Chem. Rev. 2024; 503: 215641
- 15 Andrejčák S, Májek M. Chem. Eur. J. 2024; 30: 202401795
- 16 Hardwick T, Ahmed N. ACS Sustainable Chem. Eng. 2021; 9: 4324
- 17 Khan H, Bera S, Jung M, Kwon S. ChemElectroChem 2024; 11: 202400239
- 18 Singh AK, Jaryal A, Patel SK, Kumar D, Iyer ES. S, Kailasam K, Indra A. J. Mater. Chem. A 2023; 11: 16724
- 19 Chen R, Meng L, Xu W, Li L. Small 2024; 20: 2304807
- 20 Xu XT, Pan L, Zhang X, Wang L, Zou J. Adv. Sci. 2019; 6: 1801505
- 21 Yang J, Wang D, Han H, Li C. Acc. Chem. Res. 2013; 46: 1900
- 22 Indra A, Menezes PW, Kailasam K, Hollmann D, Schröder M, Thomas A, Brückner A, Driess M. Chem. Commun. 2016; 52: 104
- 23 Zhong PF, Tu J, Zhao Y, Zhong N, Yang C, Guo L, Xia W. Nat. Commun. 2023; 14: 6530
- 24 Shi Q, Duan H. Chem Catal. 2022; 2: 3471
- 25 Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
- 26 Liu D, Liu JC, Cai W, Ma J, Yang HB, Xiao H, Li J, Xiong Y, Huang Y, Liu B. Nat. Commun. 2019; 10: 1779
- 27 Liu Y, Shang H, Zhang B, Yan D, Xiang X. Nat. Commun. 2024; 15: 8155
- 28 Roudesly F, Oble J, Poli G. J. Mol. Catal. A: Chem. 2017; 426: 275
- 29 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 30 Chae SY, Mehmood A, Park ED. J. Am. Chem. Soc. 2024; 146: 4314
- 31 Talasila G, Sachdev S, Srivastva U, Saxena D, Ramakumar SS. V. Energy Rep. 2020; 6: 1963
- 32 Wang J, Zuo L, Guo Z, Yang C, Jiang Y, Huang X. Angew. Chem. Int. Ed. 2023; 62: 202315478
- 33 Li Z, Luo L, Li M, Chen W, Liu Y, Yang J, Xu S, Zhou H, Ma L, Xu M, Kong X, Duan H. Nat. Commun. 2021; 12: 6698
- 34 Wang XD, Huang YH, Liao J, Wei Z, Li W, Xu Y, Chen H, Kuang D. Nat. Commun. 2021; 12: 1202
- 35 Liu Y, Zhang B, Yan D, Xiang X. Green Chem. 2024; 26: 2505
- 36 Wang J.-H, Li X.-B, Li J, Lei T, Wu H.-L, Nan X.-L, Tung C.-H, Wu L.-Z. Chem. Commun. 2019; 55: 10376
- 37 Özcan L, Yurdakal S, Augugliaro V, Loddo V, Palmas S, Palmisano G, Palmisano L. Appl. Catal., B 2013; 132–133: 535
- 38 Miao Y, Li Z, Luo L, Chen W, Ma L, Fan K, Song Y, Hu Y, Li R, Shao M. Appl. Catal., B 2025; 361: 124588
- 39 Li Q, Dang K, Wu L, Liu S, Zhang Y, Zhao J. Adv. Sci. 2024; 11: 2408767
- 40 Won S, Park D, Jung Y, Kim H, Chung TD. Chem. Sci. 2024; 15: 16705
- 41 Zhao J, Hao S, Zhao P, Ding J, Li R, Zhang H, Dong S. J. Am. Chem. Soc. 2025; 147: 9210
- 42 Luo L, Chen W, Xu SM, Yang J, Li M, Zhou H, Xu M, Shao M, Kong X, Li Z, Duan H. J. Am. Chem. Soc. 2022; 144: 7720
- 43 Tateno H, Chen SY, Miseki Y, Nakajima T, Mochizuki T, Sayama K. ACS Sustainable Chem. Eng. 2022; 10: 7586
- 44 Bora DK, Nadjafi M, Armutlulu A, Hosseini D, Castro-Fernández P, Toth R. Energy Adv. 2022; 1: 715
- 45 Tateno H, Miseki Y, Sayama K. Chem. Commun. 2017; 53: 4378
- 46 Zhang J, Zhu Y, Njel C, Liu Y, Dallabernardina P, Stevens MM, Seeberger PH, Savateev O, Loeffler FF. Nat. Commun. 2023; 14: 7104
- 47 Feng X, Feng X, Zhang F. J. Mater. Chem. A 2023; 11: 20242
- 48 Huang L, Vo T, Chiang C. Electrochim. Acta 2019; 322: 134725
- 49 Lu Y, Lee BG, Lin C, Liu T, Wang Z, Miao J, Oh SH, Kim KC, Zhang K, Park JH. Nat. Commun. 2024; 15: 5475
- 50 Sun H, Tang R, Wang L, Liang Y, Yang W, Lin Z, Zhang X, Chen K, Liang W, Zhao S, Zheng R, Huang J. EES Catal. 2025; 3: 337
- 51 Sun Y, Han G, Du L, Yin G, Li Y, Wang Y. Chem Catal. 2021; 1: 1260
- 52 Pan S, Li J, Wen Z, Lu R, Zhang Q, Jin H, Zhang L, Chen Y, Wang S. Adv. Energy Mater. 2022; 12: 2004002
- 53 Singh AK, Das C, Indra A. Coord. Chem. Rev. 2022; 465: 214516
- 54 Singh B, Ansari T, Verma N, Huang Y, Mannu P, Dong C, Indra A. J. Mater. Chem. A 2024; 12: 19321
- 55 Yadav A, Ansari T, Mannu P, Singh B, Singh AK, Huang YC, Kumar V, Singh S, Dong C.-L, Indra A. J. Mater. Chem. A 2024; 12: 29072
- 56 Maurya P, Ansari T, Indra A. Chem. Commun. 2023; 59: 13359
- 57 Miao Y, Li Z, Song Y, Fan K, Guo J, Li R, Shao M. Appl. Catal., B 2023; 323: 122147
- 58 Wu YH, Kuznetsov DA, Pflug NC, Fedorov A, Muller CR. J. Mater. Chem. A 2021; 9: 6252
- 59 Liu Y, Wang M, Zhang B, Yan D, Xiang X. ACS Catal. 2022; 12: 6946
- 60 Wang Q, Ma X, Wu P, Li B, Zhang L, Shi J. Nano Energy 2021; 89: 106326
- 61 Wang J, Yang C, Gao H, Zuo L, Guo Z, Yang P, Li S, Tang Z. Angew. Chem. Int. Ed. 2024; 63: 202408901
- 62 Tateno H, Miseki Y, Sayama K. Chem. Commun. 2019; 55: 9339
- 63 Hardwick T, Qurashi A, Shirinfar B, Ahmed N. ChemSusChem 2020; 13: 1967
-
64
Su K,
Ren S,
Gao R,
Bai G,
Wu L,
Wang L.
Angew. Chem. Int. Ed. 2025; 202422443