RSS-Feed abonnieren
DOI: 10.1055/a-2580-9035
Development of the Dioxasilepanyl Group Si(pan): A Seven-Membered Dialkoxysilane Unit
This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI (grant numbers JP21H01934 and JP24H02209 in Transformative Research Areas (A), and JP24A202 in Integrated Science of Synthesis by Chemical Structure Reprogramming (SReP)), the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) (grant number JPMJCR19R4). K.H. acknowledges the JST, Support for Pioneering Research Initiated by the Next Generation (SPRING) (grant number JPMJSP2110) for financial support.

Abstract
This Account describes the development and applications of a new cyclic dialkoxysilane unit, Si(pan), featuring a unique seven-membered ring system. Although alkoxysilanes are invaluable functional groups in organic synthesis, they typically exhibit an inherent trade-off between stability and reactivity. The Si(pan) unit circumvents this limitation through its distinctive structural features: a tetramethylated seven-membered ring that confers enhanced kinetic stability while preserving the requisite Lewis acidity at the silicon center. We demonstrate that Si(pan)-containing compounds exhibit exceptional stability under diverse reaction conditions while maintaining high reactivity toward selective transformations. The synthetic utility of this silicon unit is demonstrated through efficient protocols, including arylalkali-metal substitution reactions, C–H silylation, and transition-metal-catalyzed cross-coupling reactions. Additionally, we have developed a new silylation methodology by exploiting in situ generated silylpotassium species derived from the Si(pan)Me dimer. Furthermore, we describe the development of a trialkoxysilyl unit, Si(pan)OMe, enabling the controlled synthesis of unsymmetrical diaryldialkoxysilanes and serving as a practical surrogate for trimethoxysilanes. These findings establish Si(pan) as a versatile silicon-based functional group that facilitates previously challenging transformations in organosilicon chemistry.
1 Introduction
2 Chemistry of Si(pan)Me
3 Chemistry of Si(pan)OR
4 Conclusion
Publikationsverlauf
Eingereicht: 18. März 2025
Angenommen nach Revision: 10. April 2025
Accepted Manuscript online:
10. April 2025
Artikel online veröffentlicht:
14. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Shintani R, Moriya K, Hayashi T. J. Am. Chem. Soc. 2011; 133: 16440
- 1b Ishida N, Ikemoto W, Murakami M. J. Am. Chem. Soc. 2014; 136: 5912
- 1c Wang XB, Zheng ZJ, Xie JL, Gu XW, Mu QC, Yin GW, Ye F, Xu Z, Xu LW. Angew. Chem. Int. Ed. 2020; 59: 790
- 2a Tacke R, Zilch H. Endeavour 1986; 10: 191
- 2b Pooni PK, Showell GA. Mini-Rev. Med. Chem. 2006; 6: 1169
- 2c Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 2d Tacke R, Dörrich S. In Atypical Elements in Drug Design, Vol. 17. Schwartz J. Springer International Publishing; Cham: 2014: 29
- 2e Fujii S, Hashimoto Y. Future Med. Chem. 2017; 9: 485
- 2f Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
- 2g Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
- 3a Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellner E. ChemMedChem 2008; 3: 152
- 3b Luo G, Chen L, Li Y, Fan Y, Wang D, Yang Y, Gao L, Jiang R, Song Z. Org. Chem. Front. 2021; 8: 5941
- 4a Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 4b Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
- 5a Murphy MK, Beauchamp JL. J. Am. Chem. Soc. 1977; 99: 4992
- 5b Krouse IH, Wenthold PG. J. Am. Soc. Mass Spectrom. 2005; 16: 697
- 6 Correia R, DeShong P. J. Org. Chem. 2001; 66: 7159
- 7a Gurung SK, Thapa S, Vangala AS, Giri R. Org. Lett. 2013; 15: 5378
- 7b Tang P, Ritter T. Tetrahedron 2011; 67: 4449
- 8a Zhang Q, Hitoshio K, Saito H, Shimokawa J, Yorimitsu H. Eur. J. Org. Chem. 2020; 4018
- 8b Zhang Q, Deng S, Li D, Shimokawa J, Yorimitsu H. Chem. Asian J. 2022; 17: e202101345
- 9 Maegawa Y, Waki M, Umemoto A, Shimada T, Inagaki S. Tetrahedron 2013; 69: 5312
- 10a Martin SE. S, Watson DA. J. Am. Chem. Soc. 2013; 135: 13330
- 10b Saito H, Nogi K, Yorimitsu H. Angew. Chem. Int. Ed. 2018; 57: 11030
- 10c Fukui K, Saito H, Shimokawa J, Yorimitsu H. Synlett 2020; 31: 1328
- 11a Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
- 11b Karmel C, Hartwig JF. J. Am. Chem. Soc. 2020; 142: 10494
- 12 Cheng C, Hartwig JF. Science 2014; 343: 853
- 13 Saito H, Shimokawa J, Yorimitsu H. Chem. Sci. 2021; 12: 9546
- 14 Hitoshio K, Morinaga T, Sahashi R, Goshona S, Yamagishi H, Saito H, Shimokawa J, Yorimitsu H. Synthesis 2025; 57: 1475
- 15 Noguchi H, Hojo K, Suginome M. J. Am. Chem. Soc. 2007; 129: 758
- 16 Igawa K, Takada J, Shimono T, Tomooka K. J. Am. Chem. Soc. 2008; 130: 16132
- 17 Millanvois A, Ollivier C, Fensterbank L. Eur. J. Inorg. Chem. 2022; e202101109
- 18 Ikeuchi T, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2021; 143: 4879
- 19 Karmel C, Chen Z, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 7063
- 20 Gigler P, Herrmann W, Kühn F. Synthesis 2010; 1431
- 21 De Mico A, Margarita R, Parlanti L, Vescovi A, Piancatelli G. J. Org. Chem. 1997; 62: 6974
- 22 Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem. Sci. 2011; 2: 57
- 23 Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
- 24 Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
- 25 Nakao Y, Imanaka H, Sahoo AK, Yada A, Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
- 26 Smitrovich JH, Woerpel KA. J. Org. Chem. 1996; 61: 6044
- 27 Hitoshio K, Shimokawa J, Yorimitstu H. Angew. Chem. Int. Ed. 2025; e202424183
- 28 Hitoshio K, Maeda H, Teranishi K, Shimokawa J, Yorimitsu H. Chem. Commun. 2024; 60: 7339
- 29a Hardman-Baldwin AM, Mattson AE. Product Subclass 47: Silanols . In Science of Synthesis, Knowledge Updates 2017/1 . Joule JA, Krause N, Oestreich M, Rademann J, Schaumann E, Wirth T. Georg Thieme Verlag; Stuttgart: 2017: 213
- 29b Leveille A, Mattson A. Silanediols, Phosphoramides, and Other OH- and NH-Based H-Donor Catalysts. In Anion-Binding Catalysis. García-Mancheno O. Wiley-VCH; Weinheim: 2021: 201
- 30 Morita T, Okamoto Y, Sakurai H. J. Chem. Soc., Chem. Commun. 1978; 874
- 31 Madsen AS, Kristensen HM. E, Lanz G, Olsen CA. ChemMedChem 2014; 9: 614
- 32 Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y. Org. Lett. 2002; 4: 1843
- 33 Tyler LJ. J. Am. Chem. Soc. 1955; 77: 770