Subscribe to RSS
DOI: 10.1055/a-2592-1627
Stachybotrins G and H, Two New Phenylspirodrimane Derivatives from the Fungus Stachybotrys chartarum
This work was supported by the National Natural Science Foundation of China (32070053 and 22277137 to Y. X.) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP to Y. X.).
Abstract
Two new phenylspirodrimane derivatives, designated as stachybotrins G and H (1 and 2), which feature an N-isobutyl side chain, along with four known analogues (3−6), were isolated from the fungus Stachybotrys chartarum. All the structures were determined through comprehensive spectroscopic analyses, primarily based on HRESIMS and NMR data. The antibacterial activity of all isolated compounds was evaluated. Compound 5 demonstrated antibacterial activity against the Gram-positive bacterium Staphylococcus aureus ATCC 6538, with a minimum inhibitory concentration (MIC) value of 6.25 µg/mL.
Keywords
Stachybotrys chartarum - Stachybotryaceae - phenylspirodrimane derivatives - N-isobutyl group - antibacterial activitySupporting Information
- Supporting Information
HRESIMS, 1D, and 2D NMR spectra for compounds 1 and 2 and 1D NMR spectra of compounds 3−6 are available as Supporting Information.
Publication History
Received: 16 February 2025
Accepted after revision: 16 April 2025
Accepted Manuscript online:
22 April 2025
Article published online:
14 May 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Wang A, Xu Y, Gao Y, Huang Q, Luo X, An H, Dong J. Chemical and bioactive diversities of the genera Stachybotrys and Memnoniella secondary metabolites. Phytochem Rev 2015; 14: 623-655
- 2 Ibrahim SRM, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA. Stachybotrys chartarum–a hidden treasure: Secondary metabolites, bioactivities, and biotechnological relevance. J Fungi 2022; 8: 504
- 3 Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009–2019). Org Biomol Chem 2021; 19: 1644-1704
- 4 Kaise H, Shinohara M, Miyazaki W, Izawa T, Nakano Y, Sugawara M, Sugiura K, Sasaki K. Structure of K-76, a complement inhibitor produced by Stachybotrys complementi nov. Sp. K-76. J Chem Soc, Chem Commun 1979; 16: 726-727
- 5 Ma X, Li L, Zhu T, Ba M, Li G, Gu Q, Guo Y, Li D. Phenylspirodrimanes with anti-HIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J Nat Prod 2013; 76: 2298-2306
- 6 Zhao J, Feng J, Tan Z, Liu J, Zhao J, Chen R, Xie K, Zhang D, Li Y, Yu L, Chen X, Dai J. Stachybotrysins A–G, phenylspirodrimane derivatives from the fungus Stachybotrys chartarum . J Nat Prod 2017; 80: 1819-1826
- 7 Wu B, Oesker V, Wiese J, Malien S, Schmaljohann R, Imhoff JF. Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar Drugs 2014; 12: 1924-1938
- 8 Liu D, Li Y, Guo X, Ji W, Lin W. Chartarlactams Q−T, dimeric phenylspirodrimanes with antibacterial and antiviral activities. Chem Biodivers 2020; 17: e2000170
- 9 Zhao J, Feng J, Tan Z, Liu J, Zhang M, Chen R, Xie K, Chen D, Li Y, Chen X, Dai J. Bistachybotrysins A–C, three phenylspirodrimane dimers with cytotoxicity from Stachybotrys chartarum . Bioorg Med Chem Lett 2018; 28: 355-359
- 10 Zhang H, Yang MH, Zhuo FF, Gao N, Cheng XB, Wang XB, Pei YH, Kong LY. Seven new cytotoxic phenylspirodrimane derivatives from the endophytic fungus Stachybotrys chartarum . RSC Adv 2019; 9: 3520-3531
- 11 Wang S, Li S, Chen Y, Wang Y, Liu Z, Zhang W, Deng H. A new phenylspirodrimane derivative from the deep-sea-derived fungus Stachybotrys chartarum FS705. Nat Prod Res 2024; 39: 1-7
- 12 Jarvis BB. Stachybotrys chartarum: a fungus for our time. Phytochemistry 2003; 64: 53-60
- 13 Li Y, Wu C, Liu D, Proksch P, Guo P, Lin W. Chartarlactams A–P, phenylspirodrimanes from the sponge-associated fungus Stachybotrys chartarum with antihyperlipidemic activities. J Nat Prod 2014; 77: 138-147
- 14 Li Y, Liu D, Cheng Z, Proksch P, Lin W. Cytotoxic trichothecene-type sesquiterpenes from the sponge-derived fungus Stachybotrys chartarum with tyrosine kinase inhibition. RSC Adv 2017; 7: 7259-7267
- 15 Li YF, Zhang PP, Yan SJ, Xu JY, Niaz SI, Chand R, Eddie Ma CH, Lin YC, Li J, Liu L. Atranones with enhancement neurite outgrowth capacities from the crinoid-derived fungus stachybotrys chartarum 952. Tetrahedron 2017; 73: 7260-7266
- 16 Yoganathan K, Yang LK, Rossant C, Huang Y, Ng S, Butler MS, Buss AD. Cochlioquinones and epi-cochlioquinones: Antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J Antibiot 2004; 57: 59-63
- 17 Yang B, Long J, Pang X, Lin X, Liao S, Wang J, Zhou X, Li Y, Liu Y. Structurally diverse polyketides and phenylspirodrimanes from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. J Antibiot 2021; 74: 190-198
- 18 Jarvis BB, Salemme J, Morais A. Stachybotrys toxins. 1. Nat Toxins 1995; 3: 10-16
- 19 Ibrahim SRM, Choudhry H, Asseri AH, Elfaky MA, Mohamed SGA, Mohamed GA. Stachybotrys chartarum–a hidden treasure: Secondary metabolites, bioactivities, and biotechnological relevance. J Fungi 2022; 8: 504
- 20 Sakai K, Watanabe K, Masuda K, Tsuji M, Hasumi K, Endo A. Isolation, characterization and biological activities of novel triprenyl phenols as pancreatic cholesterol esterase inhibitors produced by Stachybotrys sp. F-1839. J Antibiot 1995; 48: 447-456
- 21 Liu J, Jia X, Zhao J, Feng J, Chen M, Chen R, Xie K, Chen D, Li Y, Zhang D, Peng Y, Si S, Dai J. Bistachybotrysins L–V, bioactive phenylspirodrimane dimers from the fungus Stachybotrys chartarum . Org Chem Front 2020; 7: 531-542
- 22 Vázquez MJ, Vega A, Rivera-Sagredo A, Jiménez-Alfaro MD, Díez E, Hueso-Rodríguez JA. Novel sesquiterpenoids as tyrosine kinase inhibitors produced by Stachybotrys chortarum . Tetrahedron 2004; 60: 2379-2385
- 23 El Maddah F, Eguereva E, Kehraus S, König GM. Biosynthetic studies of novel polyketides from the marine sponge-derived fungus Stachylidium sp. 293K04. Org Biomol Chem 2019; 17: 2747-2752
- 24 Sanchez JF, Entwistle R, Corcoran D, Oakley BR, Wang CCC. Identification and molecular genetic analysis of the cichorine gene cluster in Aspergillus nidulans . Medchemcomm 2012; 3: 997-1002
- 25 Guo Y, Contesini FJ, Wang X, Ghidinelli S, Tornby DS, Andersen TE, Mortensen UH, Larsen TO. Biosynthesis of calipyridone A represents a fungal 2-pyridone formation without ring expansion in Aspergillus californicus . Org Lett 2022; 24: 804-808
- 26 Shi QW, Kiyota H. New natural taxane diterpenoids from Taxus species since 1999. Chem Biodivers 2005; 2: 1597-1623
- 27 Hampel D, Mau CJD, Croteau RB. Taxol biosynthesis: Identification and characterization of two acetyl CoA: Taxoid-O-acetyl transferases that divert pathway flux away from taxol production. Arch Biochem Biophys 2009; 487: 91-97
- 28 Chau M, Walker K, Long R, Croteau R. Regioselectivity of taxoid-O-acetyltransferases: Heterologous expression and characterization of a new taxadien-5α-ol-O-acetyltransferase. Arch Biochem Biophys 2004; 430: 237-246
- 29 Jiang B, Gao L, Wang H, Sun Y, Zhang X, Ke H, Liu S, Ma P, Liao Q, Wang Y, Wang H, Liu Y, Du R, Rogge T, Li W, Shang Y, Houk KN, Xiong X, Xie D, Huang S, Lei X, Yan J. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 2024; 383: 622-629
- 30 De La Peña R, Hodgson H, Liu JCT, Stephenson MJ, Martin AC, Owen C, Harkess A, Leebens-Mack J, Jimenez LE, Osbourn A, Sattely ES. Complex scaffold remodeling in plant triterpene biosynthesis. Science 2023; 379: 361-368
- 31 Zhang P, Li Y, Jia C, Lang J, Niaz SI, Li J, Yuan J, Yu J, Chen S, Liu L. Antiviral and anti-inflammatory meroterpenoids: Stachybonoids A–F from the crinoid-derived fungus Stachybotrys chartarum 952. RSC Adv 2017; 7: 49910-49916
- 32 Xiao D, Zhang M, Wu P, Li T, Li W, Zhang L, Yue Q, Chen X, Wei X, Xu Y, Wang C. Halovirs I–K, antibacterial and cytotoxic lipopeptaibols from the plant pathogenic fungus Paramyrothecium roridum NRRL 2183. J Antibiot 2022; 75: 247-257