Subscribe to RSS
DOI: 10.1055/a-2599-2262
Analyse der krankheitsbedingten Fehltage von Soldatinnen und Soldaten der Bundeswehr von 2008 bis 2018 Teil 2: Retrospektive Analyse von Risikofaktoren für Langzeiterkrankungen
Analysis of Sickness-Related Days of Absence among Soldiers of the German Armed Forces from 2008 to 2018 Part 2: Retrospective Analysis of Risk Factors for Long-Term Illnesses
Zusammenfassung
Hintergrund
Langzeiterkrankungen haben weitreichende Auswirkungen für die Betroffenen selbst sowie auf gesamtgesellschaftlicher Ebene. Ziel dieser Studie war es, Risikofaktoren für Langzeiterkrankungen bei Soldatinnen und Soldaten der Bundeswehr zu analysieren, um zielgruppengerechte und risikoadaptierte Präventionsmaßnahmen ableiten zu können.
Methode
Es wurden die Krankschreibungen aller Soldatinnen und Soldaten der Bundeswehr im Zeitraum 2008–2018 deskriptiv analysiert und Risikofaktoren mittels zweidimensionaler Kontingenztafeln für die Merkmale Geschlecht, Laufbahngruppe, Altersgruppe und Hauptdiagnose bezogen auf die Arbeitsunfähigkeit (>42 und>84 Tage) ermittelt, wobei eine statistisch signifikante Odds Ratio (OR)>1,00 (McNemar-Test, p<0,05) vorliegen musste. Durch das Verknüpfen von Risikofaktoren mit den jeweils zugrunde liegenden drei häufigsten ICD-10 Einzeldiagnosen wurden Risikokonstellation identifiziert.
Ergebnisse
Als Risikofaktoren konnten die Altersgruppen 30–39 Jahre (OR 1,13; 95% Konfidenzintervall [1,10; 1,16]), 40–49 Jahre (OR 1,50 [1,45; 1,54]), 50–59 Jahre (OR 1,81 [1,74; 1,88]), die Laufbahngruppen der Unteroffiziere (OR 1,35 [1,32; 1,37]) und Offiziere (OR 1,26 [1,23; 1,30]), sowie weibliches Geschlecht (OR 1,23 [1,19; 1,26]) ermittelt werden. Auch Hauptdiagnosen aus den ICD-10 Diagnosekapiteln „Psychische Störungen (F-Diagnosen)“ (OR 6,50 [6,35; 6,65]), „Krankheiten des Muskel-Skelett-Systems (M-Diagnosen)“ (OR 2,54 [2,48; 2,60]) sowie „Verletzungen (S-T-Diagnosen)“ (OR 3,37 [3,30; 3,45]) stellen Risikofaktoren dar. Die ICD-10 Einzeldiagnosen „Belastungsreaktionen (F43)“ und „Depressive Episode (F32)“ waren bei allen analysierten Merkmalen unter den jeweils drei häufigsten Diagnosen vertreten. Als Risikokonstellationen finden sich Unteroffiziere mit „Kniegelenksverletzungen (S83)“, Offiziere mit „Bandscheibenschäden (M51)“ sowie Frauen mit „Schwangerschaftsbeschwerden (O26)“.
Schlussfolgerungen
Durch die vorliegende Studie wurden neben der übergreifenden Bedeutung der F-Diagnosen weitere Risikofaktoren und -konstellationen für Langzeiterkrankungen identifiziert. Auf dieser Grundlage können zielgruppengerechte und risikoadaptierte Präventionsmaßnahmen, z. B. im Rahmen eines betrieblichen Gesundheitsmanagements, entwickelt werden. Auch Konzepte zur Förderung der „Frauengesundheit“ erscheinen zielführend. Die Effekte zielgruppengerechter und risikoadaptierter Präventionsmaßnahmen sollten in Folgestudien überprüft werden.
Abstract
Background
Long-term illnesses have far-reaching consequences for the patients themselves, as well as for society as a whole. The aim of this study was to analyze risk factors for long-term illnesses among soldiers of the German armed forces in order to derive target group-specific and risk-adapted prevention measures.
Method
The sick leaves of all soldiers of the German armed forces in the period 2008–2018 were analyzed descriptively and risk factors were determined using two-dimensional contingency tables for the attributes gender, military career group, age group and main diagnosis in relation to sick leave (>42 and>84 days), whereby a statistically significant odds ratio (OR)>1.00 (McNemar test, p<0.05) had to be present. Risk constellations were identified by linking risk factors with the three most common underlying ICD-10 diagnoses.
Results
The age groups 30–39 years (OR 1.13; 95% confidence interval [1.10; 1.16]), 40–49 years (OR 1.50 [1.45; 1.54]), 50–59 years (OR 1.81 [1.74; 1.88]), the military career group of non-commissioned officers (OR 1.35 [1.32; 1.37]) and officers (OR 1 .26 [1.23; 1.30]), as well as female gender (OR 1.23 [1.19; 1.26]) were identified as risk factors. Main diagnoses from the ICD-10 chapters “mental and behavioral disorders (F-codes)” (OR 6.50 [6.35; 6.65]), “diseases of the musculoskeletal system (M-codes)” (OR 2.54 [2.48; 2.60]) and “injuries, poisoning and certain other consequences of external causes (S-T-codes)” (OR 3.37 [3.30; 3.45]) were also risk factors. The ICD-10 diagnoses “reactions to severe stress and adjustment disorders (F43)” and “depressive episode (F32)” were among the three most frequent diagnoses for all analyzed attributes. Non-commissioned officers with “knee injuries (S83)”, officers with “intervertebral disc disorders (M51)” and women with “pregnancy complaints (O26)” were risk constellations.
Conclusion
In addition to the comprehensive relevance of diagnoses of “mental and behavioral disorders”, the study identified further risk factors and risk constellations for long-term illnesses. Based on this results target group-specific and risk-adapted prevention measures can be developed, e. g. as part of company health management. Concepts for “women’s health” should also be implemented in the future. The effects of target group-specific and risk-adapted prevention measures need to be analyzed in follow-up studies.
Schlüsselwörter
Langzeiterkrankung - Risikofaktor - Depressive Episode - Schwangerschaftsbeschwerden - Prävention - SoldatenKeywords
long-term sick leave - risk factor - depressive disorder - pregnancy complaints - prevention - soldiersPublication History
Received: 17 March 2025
Accepted: 16 April 2025
Article published online:
21 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Golics CJ, Basra MK, Finlay AY. et al. The impact of disease on family members: a critical aspect of medical care. J R Soc Med 2013; 106: 399-407
- 2 Sieurin L, Josephson M, Vingard E. Positive and negative consequences of sick leave for the individual, with special focus on part-time sick leave. Scand J Public Health 2009; 37: 50-56
- 3 Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Volkswirtschaftliche Kosten durch Arbeitsunfähigkeit 2022. Online https://www.baua.de/DE/Themen/Monitoring-Evaluation/Zahlen-Daten-Fakten/Kosten-der-Arbeitsunfaehigkeit letzter Zugriff 07.10.2024
- 4 Kordt M. DAK Gesundheitsreporte 2009 - 2019
- 5 Grobe TG, Steinmann S, Gerr J. Barmer Gesundheitsreporte 2009 - 2019
- 6 Grobe TG, Steinmann S. Die Techniker Gesundheitsreporte 2009 - 2019 - Arbeitsunfähigkeiten
- 7 Dierich A, Schmidt K, Lison A. et al. [Analysis of Sickness-Related Days of Absence among Soldiers of the German Armed Forces from 2008 to 2018 Part 1: Retrospective Analysis with Comparison to the Statutory Health Insurance System]. Gesundheitswesen 2023; 85: 878-886
- 8 Saltychev M, Laimi K, El-Metwally A. et al. Effectiveness of multidisciplinary primary prevention in decreasing the risk of work disability in a low-risk population. Scand J Work Environ Health 2012; 38: 27-37
- 9 Saltychev M, Laimi K, Oksanen T. et al. Does perceived work ability improve after a multidisciplinary preventive program in a population with no severe medical problems? The Finnish Public Sector Study. Scand J Work Environ Health 2013; 39: 57-65
- 10 Tveito TH, Eriksen HR. Integrated health programme: a workplace randomized controlled trial. J Adv Nurs 2009; 65: 110-119
- 11 Ingemarsson AH, Nordholm L, Sivik T. Risk of long-term disability among patients with back pain. Scand J Rehabil Med 1997; 29: 205-212
- 12 Nystuen P, Hagen KB, Herrin J. Mental health problems as a cause of long-term sick leave in the Norwegian workforce. Scand J Public Health 2001; 29: 175-182
- 13 DAK Psychreport 2024 Entwicklungen der psychischen Erkrankungen im Job: 2013-2023. Februar 2024
- 14 Lass-Hennemann J, Sopp MR, Ruf N. et al. Generation climate crisis, COVID-19, and Russia-Ukraine-War: global crises and mental health in adolescents. Eur Child Adolesc Psychiatry 2024; 33: 2203-2216
- 15 Dekkers-Sanchez PM, Hoving JL, Sluiter JK. et al. Factors associated with long-term sick leave in sick-listed employees: a systematic review. Occup Environ Med 2008; 65: 153-157
- 16 Cornelius LR, van der Klink JJ, Groothoff JW. et al. Prognostic factors of long term disability due to mental disorders: a systematic review. J Occup Rehabil 2011; 21: 259-274
- 17 Jacob L, Koyanagi A, Haro JM. et al. Prevalence of and factors associated with long-term sick leave in working-age adults with osteoarthritis: a retrospective cohort study conducted in Germany. Int Arch Occup Environ Health 2023; 96: 303-311
- 18 Jacob L, Koyanagi A, Smith L. et al. Prevalence of and factors associated with long-term sick leave in working-age adults with chronic low back pain in Germany. Int Arch Occup Environ Health 2022; 95: 1549-1556
- 19 eurostat. Fruchtbarkeitsziffern. Online https://ec.europa.eu/eurostat/databrowser/view/demo_find/default/table?lang=en letzter Zugriff 07.20.202420
- 20 Liddle SD, Pennick V. Interventions for preventing and treating low-back and pelvic pain during pregnancy. Cochrane Database Syst Rev 2015; 2015: CD001139
- 21 Dorheim SK, Bjorvatn B, Eberhard-Gran M. Sick leave during pregnancy: a longitudinal study of rates and risk factors in a Norwegian population. BJOG 2013; 120: 521-530
- 22 Van Kampen M, Devoogdt N, De Groef A. et al. The efficacy of physiotherapy for the prevention and treatment of prenatal symptoms: a systematic review. Int Urogynecol J 2015; 26: 1575-1586
- 23 Shiri R, Coggon D, Falah-Hassani K. Exercise for the prevention of low back and pelvic girdle pain in pregnancy: A meta-analysis of randomized controlled trials. Eur J Pain 2018; 22: 19-27
- 24 Pichler BKK, Münch-Beurle A. Handbuch Betriebliche Frauengesundheitsförderung. Büro für Frauengesundheit und Gesundheitsziele in der Abteilung Strategische Gesundheitsversorgung der Stadt Wien 2020
- 25 Agentur für Sicherheit und Gesundheitsschutz am Arbeitsplatz. Online https://osha.europa.eu/de/themes/women-and-health-work letzter Zugriff 08.10.2024
- 26 Trego L, Wilson C, Steele N. A call to action for evidence-based military women's health care: developing a women's health research agenda that addresses sex and gender in health and illness. Biol Res Nurs 2010; 12: 171-177
- 27 Zebis MK, Andersen LL, Bencke J. et al. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med 2009; 37: 1967-1973
- 28 Mehl J, Diermeier T, Herbst E. et al. Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg 2018; 138: 51-61
- 29 Lohmander LS, Englund PM, Dahl LL. et al. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007; 35: 1756-1769
- 30 Benner RW, Shelbourne KD, Bauman SN. et al. Knee Osteoarthritis: Alternative Range of Motion Treatment. Orthop Clin North Am 2019; 50: 425-432
- 31 Hoffeld K, Lenz M, Egenolf P. et al. Patient-related risk factors and lifestyle factors for lumbar degenerative disc disease: a systematic review. Neurochirurgie 2023; 69: 101482
- 32 Uysal E, Cine HS, Cetin E. The necessity and timing of exercise after lumbar disc herniation surgery. Eur Rev Med Pharmacol Sci 2023; 27: 9521-9529