Subscribe to RSS

DOI: 10.1055/a-2615-8249
Preclinical Evaluation of Baicalin for the Treatment of Diabetic Nephropathy: A Systematic Review and Meta-Analysis
This work was financially supported by the National Natural Science Foundation of China (Grant No. 32141005).

Abstract
Scutellaria baicalensis, a widely used medicinal herb in traditional Chinese medicine, is frequently employed in the treatment of diabetic nephropathy (DN). Its primary active constituent, baicalin, has shown significant therapeutic potential in animal models of DN; however, no comprehensive and systematic evaluation of its therapeutic effects and underlying mechanisms in DN has yet been conducted. This meta-analysis aimed to assess the efficacy of baicalin in DN treatment and elucidate its pharmacological mechanisms. Relevant studies were retrieved from databases including Web of Science, PubMed, Embase, CNKI, Wanfang Data, and VPCS, covering the literature up to November 2024. Study quality was evaluated using SYRCLEʼs risk of bias tool, and statistical analyses were performed with STATA 12. Primary outcomes included blood urea nitrogen (BUN), serum creatinine (SCR), and fasting blood glucose (FBG), while secondary outcomes encompassed urinary protein (UP), triglycerides (TG), total cholesterol (TC), inflammatory markers, fibrosis indicators, and oxidative stress parameters. Subgroup analyses, publication bias assessments, and sensitivity analyses were conducted to ensure result reliability. A total of 14 studies involving 221 rodents met the inclusion criteria. Baicalin significantly reduced BUN, SCR, FBG, TG, TC, UP, interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and fibronectin (FN) levels while enhancing superoxide dismutase (SOD) activity. These findings suggest that baicalin improves kidney function, reduces proteinuria, corrects lipid metabolism, and alleviates inflammation, oxidative stress, and fibrosis. This meta-analysis concludes that baicalin exhibits significant therapeutic potential in DN models, acting via anti-inflammatory, antioxidant, and antifibrotic mechanisms.
Keywords
Scutellaria baicalensis - Lamiaceae - baicalin - diabetic nephropathy - animal model - systematic review - mechanisms of action - meta-analysisPublication History
Received: 17 February 2025
Accepted after revision: 09 May 2025
Article published online:
24 July 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017; 12: 2032-2045
- 2 Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice 2022; 183: 109119
- 3 [Anonymous] 16. Diabetes advocacy: Standards of medical care in diabetes-2019. Diabetes Care 2020; 43: S203-S204
- 4 [Anonymous] 10. Cardiovascular disease and risk management: Standards of medical care in diabetes-2020. Diabetes Care 2020; 43: S111-S134
- 5 Fu YJ, Xu B, Huang SW, Luo X, Deng XL, Luo S, Liu C, Wang Q, Chen JY, Zhou L. Baicalin prevents LPS-induced activation of TLR4/NF-κB p 65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin 2021; 42: 88-96
- 6 Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug Des Devel Ther 2021; 15: 3207-3221
- 7 Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, Xiang Y, Gao Q, Wen C, Ma W, Liu W, Zhang M, Yang Z, Wang W, Zhang R, Chen B, Xie T, Sui X, Tao W. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B 2021; 11: 4045-4054
- 8 Hu H, Li W, Hao Y, Peng Z, Zou Z, Liang W. Baicalin ameliorates renal fibrosis by upregulating CPT1α-mediated fatty acid oxidation in diabetic kidney disease. Phytomedicine 2024; 122: 155162
- 9 Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLEʼs risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43
- 10 Sun J, Ren J, Luo H, Hu X, Yang Y. Effect of baicalin on survivin expression in a rat model of type 2 diabetic nephropathy. Shizhen Guoyi Guoyao 2019; 30: 59-61
- 11 Pang LN, Liu X, Wang M, Sun L, Liu Y. Effects of baicalin on aldose reductase activity and renal cell apoptosis in diabetic rats. Chinese Journal of Gerontology 2007; 27: 2278-2280
- 12 Li L, Su R, Luo R, Lang N, Nong X. Study on the effect of baicalin on renal function and oxidative stress in rats with diabetic nephropathy. Chinese Journal of New Drugs and Clinical Remedies 2007; 18: 341-344
- 13 Ren G, Jiao P, Yan Y, Ma X, Qin G. Baicalin exerts a protective effect in diabetic nephropathy by repressing inflammation and oxidative stress through the SphK1/S1P/NF-?B signaling pathway. Diabetes Metab Syndr Obes 2023; 16: 1193-1205
- 14 Ou Y, Zhang W, Chen S, Deng H. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway. Open Med(Wars) 2021; 16: 1286-1298
- 15 Zhang X, Ren G, Chen H, Chen Y, Zhu J. Effect of baicalin modulation of TLR4/MAPK/NF-kappaB signaling pathway on renal fibrosis in rats with diabetic nephropathy. Chinese Pharmacological Bulletin 2023; 39: 1840-1846
- 16 Hu SH, Zhang MX. Protective effect of baicalin on the kidneys of STZ-induced diabetic rats and its relationship with VEGF. Chinese Journal of Hospital Pharmacy 2007; 27: 885-888
- 17 Zheng XP, Nie Q, Feng J, Fan XY, Jin YL, Chen G, Du JW. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol 2020; 21: 174
- 18 Zhang XT, Wang G, Ye LF, Pu Y, Li RT, Liang J, Wang L, Lee KKH, Yang X. Baicalin reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal injury in type 1 diabetic mouse model. Cell Cycle 2020; 19: 3329-3347
- 19 Hu H, Li W, Hao Y, Peng Z, Zou Z, Liang W. Baicalin ameliorates renal fibrosis by upregulating CPT1alpha-mediated fatty acid oxidation in diabetic kidney disease. Phytomedicine 2024; 122: 155162
- 20 Zhang Y, Yao H, Li C, Sun W, Chen X, Cao Y, Liu Y, Chen J, Qi J, Zhang Q, Zhang H, Xu A, Zhang J. Gandi capsule improved podocyte lipid metabolism of diabetic nephropathy mice through SIRT1/AMPK/HNF4A pathway. Oxid Med Cell Longev 2022; 2022: 6275505
- 21 Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76: 407-416
- 22 Wang B, Zhao N, Ma P, Xu Q, Chen Q. Baicalin inhibits kidney inflammation in mice with diabetic nephropathy by modulating toll-like receptor 4/nuclear factor-kappa B signaling pathway. Curr Top Nutraceutical Res 2021; 19: 115-119
- 23 Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55: 31-55
- 24 Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20: 319-325
- 25 Zheng WX, He WQ, Zhang QR, Jia JX, Zhao S, Wu FJ, Cao XL. Baicalin inhibits NLRP3 inflammasome activity via the AMPK signaling pathway to alleviate cerebral ischemia-reperfusion injury. Inflammation 2021; 44: 2091-2105
- 26 Zhao J, Wang Z, Yuan Z, Lv S, Su Q. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice. Diab Vasc Dis Res 2020; 17: 1479164120977441
- 27 Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183: 787-791
- 28 Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 2009; 183: 792-796
- 29 He CX, Yu WJ, Yang M, Li Z, Xia XF, Li P, Cheng SW, Song ZY. [Baicalin inhibits LPS/IFN-γ-induced inflammation via TREM2/TLR4/NF-κB pathway in BV2 cells]. Zhongguo Zhong Yao Za Zhi 2022; 47: 1603-1610
- 30 Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim YG, Arindam C, Gale jr. M, Silverman RH, Colonna M, Akira S, Núñez G. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol 2014; 193: 4214-4222
- 31 Kailasan Vanaja S, Rathinam VA, Atianand MK, Kalantari P, Skehan B, Fitzgerald KA, Leong JM. Bacterial RNA : DNA hybrids are activators of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 2014; 111: 7765-7770
- 32 Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Müller M, Blander JM. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 2011; 474: 385-389
- 33 Sha W, Mitoma H, Hanabuchi S, Bao M, Weng L, Sugimoto N, Liu Y, Zhang Z, Zhong J, Sun B, Liu YJ. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc Natl Acad Sci U S A 2014; 111: 16059-16064
- 34 Allam R, Darisipudi MN, Tschopp J, Anders HJ. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur J Immunol 2013; 43: 3336-3342
- 35 Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 2017; 214: 1351-1370
- 36 Mariathasan S, Weiss DS, Newton K, McBride J, OʼRourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228-232
- 37 Palm NW, Medzhitov R. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci U S A 2013; 110: 1809-1814
- 38 Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011; 12: 408-415
- 39 He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016; 530: 354-357
- 40 Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V. A genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem 2016; 291: 103-109
- 41 Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, Su L, Pratt D, Bu CH, Hildebrand S, Lyon S, Scott L, Quan J, Sun Q, Russell J, Arnett S, Jurek P, Chen D, Kravchenko VV, Mathison JC, Moresco EM, Monson NL, Ulevitch RJ, Beutler B. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 2016; 17: 250-258
- 42 Kayagaki N, Stowe IB, Lee BL, OʼRourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526: 666-671
- 43 Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526: 660-665
- 44 Li Y, Wang J, Huang D, Yu C. Baicalin alleviates contrast-induced acute kidney injury through ROS/NLRP3/Caspase-1/GSDMD pathway-mediated proptosis in vitro. Drug Des Devel Ther 2022; 16: 3353-3364
- 45 Sun X, Guo M, Su H, Liang M, Wu H, Zhao L, Zhang J, He J, Yong Y, Yu Z, Ma X, Ju X, Liu X. Baicalin decreases the LPS-induced intestine inflammatory responses by ROS/p-ERK/p-P38 signal pathways in vivo and in vitro. Biomedicines 2025; 13: 251
- 46 Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin-induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21: 2321-2334
- 47 He G, Karin M. NF-κB and STAT3 – key players in liver inflammation and cancer. Cell Res 2011; 21: 159-168
- 48 Park MY, Ha SE, Kim HH, Bhosale PB, Abusaliya A, Jeong SH, Park JS, Heo JD, Kim GS. Scutellarein inhibits LPS-induced inflammation through NF-κB/MAPKs signaling pathway in RAW264.7 cells. Molecules (Basel, Switzerland) 2022; 27: 3782
- 49 Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis?. Fibrogenesis Tissue Repair 2014; 7: 4
- 50 Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix producing cells in chronic kidney disease: Origin, regulation, and activation. Current pathobiology reports 2013; 1: 10
- 51 Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001; 276: 17058-17062
- 52 Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 2001; 276: 19945-19953
- 53 Liu DK, Dong HF, Liu RF, Xiao XL. Baicalin inhibits the TGF-β1/p-Smad3 pathway to suppress epithelial-mesenchymal transition-induced metastasis in breast cancer. Oncotarget 2020; 11: 2863-2872
- 54 Wu T, Liu T, Xing L, Ji G. Baicalin and puerarin reverse epithelial-mesenchymal transition via the TGF-β1/Smad3 pathway in vitro. Exp Ther Med 2018; 16: 1968-1974
- 55 Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000; 6: 1365-1375
- 56 Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 2011; 7: 1056-1067
- 57 Nagarajan RP, Zhang J, Li W, Chen Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem 1999; 274: 33412-33418
- 58 von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger EP. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 2000; 275: 11320-11326
- 59 Inoue Y, Imamura T. Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci 2008; 99: 2107-2112
- 60 Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci 2008; 13: 4984-4992
- 61 Wang H, Jiang Q, Zhang L. Baicalin protects against renal interstitial fibrosis in mice by inhibiting the TGF-β/Smad signalling pathway. Pharm Biol 2022; 60: 1407-1416
- 62 Hu Q, Gao L, Peng B, Liu X. Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway. Exp Ther Med 2017; 14: 3074-3080
- 63 Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017; 13: 629-646
- 64 Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015; 21: 37-46
- 65 Zhang Z, Wang R, Cai J, Li X, Feng X, Xu S, Jiang Z, Lin P, Huang Z, Xie Y. Baicalin alleviates lipid accumulation in adipocytes via inducing metabolic reprogramming and targeting Adenosine A1 receptor. Toxicon 2025; 258: 108339
- 66 Xiong L, He T, Liu C, Qin S, Xiao T, Xin W, Wang Y, Ran L, Zhang B, Zhao J. IL-37 ameliorates renal fibrosis by restoring CPT1A-mediated fatty acid oxidation in diabetic kidney disease. Kidney Dis (Basel) 2023; 9: 104-117
- 67 Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, Lv J, Cao C, Chen T, Zhuang S, Hou X, Zhou S, Zhang X, Chen XW, Huang Y, Xiao RP, Wang YL, Luo T, Xiao J, Wang C. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A 2018; 115: E5896-E5905
- 68 Miguel V, Rey-Serra C, Tituaña J, Sirera B, Alcalde-Estévez E, Herrero JI, Ranz I, Fernández L, Castillo C, Sevilla L, Nagai J, Reimer KC, Jansen J, Kramann R, Costa IG, Castro A, Sancho D, Rodríguez González-Moro JM, Lamas S. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol 2023; 68: 102957
- 69 Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152: 113238
- 70 Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34: 975-991
- 71 Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med 2021; 171: 179-189
- 72 Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021; 81: 3691-3707
- 73 Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74
- 74 Chen YH, Chen ZW, Li HM, Yan XF, Feng B. AGE/RAGE-Induced EMP release via the NOX-derived ROS pathway. J Diabetes Res 2018; 2018: 6823058
- 75 Zhou B, Mu J, Gong Y, Lu C, Zhao Y, He T, Qin Z. Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 2017; 11: 390-402
- 76 Das R, Xu S, Quan X, Nguyen TT, Kong ID, Chung CH, Lee EY, Cha SK, Park KS. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 2014; 306: F155-F167
- 77 Li M, Ren C. Exploring the protective mechanism of baicalin in treatment of atherosclerosis using endothelial cells deregulation model and network pharmacology. BMC Complement Med Ther 2022; 22: 257
- 78 Wang P, Wu J, Wang Q, Zhuang S, Zhao J, Yu Y, Zhang W, Zheng Y, Liu X. Baicalin inhibited both the Furin/TGFβ1/Smad3/TSP-1 pathway in endothelial cells and the AKT/Ca(2+)/ROS pathway in platelets to ameliorate inflammatory coagulopathy. Eur J Pharmacol 2023; 949: 175674
- 79 Shi L, Hao Z, Zhang S, Wei M, Lu B, Wang Z, Ji L. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC. Biochem Pharmacol 2018; 150: 9-23
- 80 Zhou L, Chen X, Lu M, Wu Q, Yuan Q, Hu C, Miao J, Zhang Y, Li H, Hou FF, Nie J, Liu Y. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int 2019; 95: 830-845
- 81 Zaghloul RA, Zaghloul AM, El-Kashef DH. Hepatoprotective effect of Baicalin against thioacetamide-induced cirrhosis in rats: Targeting NOX4/NF-κB/NLRP3 inflammasome signaling pathways. Life Sci 2022; 295: 120410
- 82 Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective role of Nrf2 in renal disease. Antioxidants (Basel) 2020; 10: 39
- 83 Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 2010; 59: 850-860
- 84 Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, Zhang N, Zhang DD. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney Int 2014; 85: 333-343
- 85 Kong W, Fu J, Liu N, Jiao C, Guo G, Luan J, Wang H, Yao L, Wang L, Yamamoto M, Pi J, Zhou H. Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction. Nephrol Dial Transplant 2018; 33: 771-783
- 86 Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G, Chen X, Chuang PY, He JC, Lee K. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int 2018; 93: 1330-1343
- 87 Zhang P, Wu H, Lou H, Zhou J, Hao J, Lin H, Hu S, Zhong Z, Yang J, Guo H, Chi J. Baicalin attenuates diabetic cardiomyopathy in vivo and in vitro by inhibiting autophagy and cell death through SENP1/SIRT3 signaling pathway activation. Antioxid Redox Signal 2025; 42: 53-76
- 88 Chen HY, Geng M, Hu YZ, Wang JH. [Effects of baicalin against oxidative stress injury of SH-SY5Y cells by up-regulating SIRT1]. Yao Xue Xue Bao 2011; 46: 1039-1044