Subscribe to RSS
DOI: 10.1055/a-2617-6013
Nickel-Catalyzed Alkylcarbonylation of α-Trifluoromethyl-Substituted Styrenes via Selective Monodefluorinative Strategy
Supported by: Jiangsu Specially Appointed Professors Plan SR10900122
Supported by: Natural Science Foundation of Jiangsu Province BK20221355,BK20231521
Supported by: National Natural Science Foundation of China 22322108

Dedication
Dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
A highly selective nickel-catalyzed monodefluorinative alkylcarbonylation between α-trifluoromethyl-substituted styrenes and alkylzinc pivalates under 1 atm of CO gas is disclosed, thus providing an expedient approach to the synthesis of polyfunctionalized gem-difluoroalkenes under mild reaction conditions. Control experiments highlight the superior reactivity of alkylzinc pivalates compared to convensional alkylzinc halides. Moreover, this method is distinguished by its ample scope and facile derivatization of the resulting products for increasing functional molecular complexity via a sequential defluorinative strategy.
Publication History
Received: 26 April 2025
Accepted after revision: 20 May 2025
Accepted Manuscript online:
20 May 2025
Article published online:
11 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Meanwell NA. J Med Chem 2011; 54: 2529
- 1b Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J-P. J Fluorine Chem 2006; 127: 637
- 1c Maekawa Y, Nambo M, Yokogawa D, Crudden CM. J Am Chem Soc 2020; 142: 15667
- 2a Nie J, Guo H-C, Cahard D, Ma J-A. Chem Rev 2011; 111: 455
- 2b Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem Rev 2015; 115-1847
- 2c Marsh ENG. Acc Chem Res 2014; 47: 2878
- 3a Meanwell NA. J Med Chem 2011; 54: 2529
- 3b Leriche C, He X, Chang C-WT, Liu H-W. J Am Chem Soc 2003; 125: 6348
- 3c Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J-P. J Fluor Chem 2006; 127: 637
- 3d Naret T, Bignon J, Bernadat G. et al. Eur J Med Chem 2018; 143: 473
- 4a See reviews. Chelucci G. Chem Rev 2012; 112: 1344
- 4b Burton DJ, Yang Z-Y, Qiu W. Chem Rev 1996; 96: 1641
- 4c Selected examples. Gao B, Zhao Y, Hu M, Ni C, Hu J. Chem Eur J 2014; 20: 7803
- 4d Gao B, Zhao Y, Hu J, Hu J. Org Chem Front 2015; 2: 163
- 4e Zheng J, Cai J, Lin J-H, Guo Y, Xiao J-C. Chem Commun 2013; 49: 7513
- 4f Nowak R, Robins MJ. Org Lett 2005; 7: 721
- 4g Krishnamoorthy S, Kothandaraman J, Saldana J, Prakash GKS. Eur J Org Chem 2016; 2016: 4965
- 4h Hu M, He Z, Gao B, Li L, Ni C, Hu J. J Am Chem Soc 2013; 135: 17302
- 4i Hu M, Ni C, Li L, Han Y, Hu J. J Am Chem Soc 2015; 137: 14496
- 4j Zheng J, Lin J-H, Yu L-Y, Wei Y, Zheng X, Xiao J-C. Org Lett 2015; 17: 6150
- 4k Zhang Z, Yu W, Wu C, Wang C, Zhang Y, Wang J. Angew Chem Int Ed 2016; 55: 273 and references cited therein
- 5a Ichitsuka T, Fujita T, Ichikawa J. ACS Catal 2015; 5: 5947
- 5b Li Y, Zhang W-S, Yang S-N. et al. Angew Chem Int Ed 2023; 62: e202300036
- 6a Huang Y, Hayashi T. J Am Chem Soc 2016; 138: 12340
- 6b Fuchibe K, Hatta H, Oh K, Oki R, Ichikawa J. Angew Chem Int Ed 2017; 56: 5890
- 7a Lan Y, Yang F, Wang C. ACS Catal 2018; 8: 9245
- 7b Chen F, Xu X, He Y, Huang G, Zhu S. Angew Chem Int Ed 2020; 59: 5398
- 7c Yue W-J, Day CS, Martin R. J. Am. Chem. Soc. 2021; 143: 6395
- 7d Wang M, Pu X, Zhao Y. et al. J Am Chem Soc 2018; 140: 9061
- 7e Ji X, Liu Y, Shi H, Cao S. Tetrahedron 2018; 74: 4155
- 7f Lin Z, Lan Y, Wang C. ACS Catal 2019; 9: 775
- 7g Zhu C, Liu ZY, Tang L. et al. Nat Commun 2020; 11: 4860
- 7h Du H-W, Chen Y, Sun J, Gao Q-S, Wang H, Zhou M-D. Org Lett 2020; 22: 9342
- 7i Yang J, Zhou X, Zeng Y, Huang C, Xiao Y, Zhang J. Org Biomol Chem 2017; 15: 2253
- 7j Dai W, Lin Y, Wan Y, Cao S. Org Chem Front 2018; 5: 55
- 7k Ping Y, Li X, Pan Q, Kong W. Angew Chem Int Ed 2022; 61: E202201574
- 7l Ma T, Li X, Ping Y, Kong W. Chin J Chem 2022; 40: 2212
- 8a Liu Y, Zhou Y, Zhao Y, Qu J. Org Lett 2017; 19: 946
- 8b Xu W, Jiang H, Leng J, Ong H-W, Wu J. Angew Chem Int Ed 2020; 59: 4009
- 8c Gao P, Yuan C, Zhao Y, Shi Z. Chem 2018; 4: 2201
- 8d Kojima R, Akiyama S, Ito H. Angew Chem Int Ed 2018; 57: 7196
- 9a Gao P, Gao L, Xi L, Zhang Z, Li S, Shi Z. Org Chem Front 2020; 7: 2618
- 9b Gao P, Wang G, Xi L, Wang M, Li S, Shi Z. Chin J Chem 2019; 37: 1009
- 10a Yao C, Wang S, Norton J, Hammond M. J Am Chem Soc 2020; 142: 4793
- 10b Zhang J, Yang J-D, Cheng J-P. Nat Commun 2021; 12: 2835
- 10c Wu X, Xie F, Gridnev ID, Zhang W. Org Lett 2018; 20: 1638
- 11 Fuchibe K, Takahashi M, Ichikawa J. Angew Chem Int Ed 2012; 51: 12059
- 12a Chen B, Yu K, Wu X-F. Org Biomol Chem 2022; 20: 5264
- 12b Also see. Wu F-P, Yuan Y, Liu J-W, Wu X-F. Angew Chem Int Ed 2021; 60: 8818
- 13a Bernhardt S, Manolikakes G, Kunz T, Knochel P. Angew Chem Int Ed 2011; 50: 9205
- 13b Stathakis CI, Bernhardt S, Quint V, Knochel P. Angew Chem Int Ed 2012; 51: 9428
- 13c Manolikakes SM, Ellwart M, Stathakis CI, Knochel P. Chem Eur J 2014; 20: 12289
- 13d Ellwart M, Knochel P. Angew Chem Int Ed 2015; 54: 10662
- 13e Hernán-Gómez A, Herd E, Hevia E. et al. Angew Chem Int Ed 2014; 53: 2706
- 13f Li J, Knochel P. Angew Chem Int Ed 2018; 57: 11436
- 14a Liu X, Wang J, Li J. Synlett 2022; 33: 1688
- 14b Cheng X, Liu X, Wang S. et al. Nat Commun 2021; 12: 4366
- 14c Liu X, Chen H, Yang D. et al. ACS Catal 2023; 13: 9254
- 14d Chen K, Lin J, Jing J. et al. Chem Sci 2024; 15: 16250
- 14e Chen K, Lin J, Guo J, Chen H, Li J. ChemCatChem 2024; 16: e202401063
- 15 Lin J, Chen K, Wang J. et al. Chem Sci 2023; 14: 8672
- 16 Xie J, Yu J, Rudolph M, Rominger F, Hashmi SK. Angew Chem Int Ed 2016; 55: 9416