RSS-Feed abonnieren
DOI: 10.1055/a-2626-7001
Exploration of the Synthetic Potential of 1,2-Oxazin-4-ones as Precursors of Enantiopure Amino Polyols
Funding Information BayerHealthCare, Deutsche Forschungsgemeinschaft

Dedication
Dedicated to the memory of Professor Volker Jäger (1942–2021) – a pioneer of the synthetic use of N-O heterocycles.
Abstract
The carbonyl group of two diastereomeric 1,2-oxazin-4-ones was employed to study routes to new enantiopure amino polyols. Addition of nucleophiles to the syn-configured diastereomer occurred with high stereoselectivity, whereas the reactions of the anti-configured 1,2-oxazine are less selective. Grignard reagents and an ester enolate were examined as nucleophiles. The carbonyl group of the 1,2-oxazin-4-ones could also be converted into an exo-methylene group by a Wittig reaction. The β-hydroxy esters derived from the ester enolate additions were treated with acid and provided bi- and tricyclic δ-lactones. Again, the configuration of the precursor compounds was crucial for the selectivity. Representative derivatives of the obtained products were either subjected to hydrogenolysis under palladium catalysis or treated with samarium diiodide as an N–O bond cleaving reagent. These reductions mostly provide the expected amino polyols. Two chain-elongated diastereomeric 1,2-oxazine derivatives bearing three contiguous stereogenic centers were also subjected to acidic conditions, which afford unique di- and tricyclic amino polyol derivatives.
Keywords
Addition of nucleophiles - Amino alcohols - δ-Lactone - Reduction - 1,2-Oxazine - Samarium diiodidePublikationsverlauf
Eingereicht: 23. April 2025
Angenommen nach Revision: 03. Juni 2025
Artikel online veröffentlicht:
07. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Pruett ST, Bushnev A, Hagedorn K. et al. J Lipid Res 2008; 49: 1621
- 2a Isono K, Asahi K, Suzuki S. J Am Chem Soc 1969; 91: 7490
- 2b Suzuki S, Isono K, Mizutani T, Kawashima Y, Mizuno T. J Antibiot 1965; A18: 131
- 2c Isono K. J Antibiot 1988; 41: 1711
- 2d Isono K. Pharmacol Ther 1991; 52: 269
- 2e Isono K, Suzuki S. Heterocycles 1979; 13: 333
- 3 Ogawa T, Katano K, Matsui M. Tetrahedron 1980; 36: 2727
- 4a He H, Silo-Suhl LA, Handelsman J, Clardy J. Tetrahedron Lett 1994; 35: 2499
- 4b Sansinenea S, Ortiz A. Curr Org Chem 2012; 16: 978
- 4c Muchalski H, Hong KB, Johnston JN. Beilstein J Org Chem 2010; 6: 1206
- 5a Annunziata R, Cinquini M, Cozzi F, Raimondi L, Restelli A. Helv Chim Acta 1985; 68: 1217
- 5b Palomo C, Aizpurua JM, Urchegui R, Garcia JM. J Org Chem 1993; 58: 1646
- 5d Castejón P, Moyano A, Pericàs MA, Riera A. Chem Eur J 1996; 2: 1001
- 5e Ishikawa T, Kudo T, Shigemori K, Saito S. J Am Chem Soc 2000; 122: 7633
- 5f Gerber-Lemaire S, Popowycz F, Glanzmann C, Vogel P. Synthesis. 1979 2002
- 5g Lu H, Su Z, Song L, Mariano PS. J Org Chem 2002; 67: 3525
- 5h Kudoh T, Ishikawa T, Shimizu Y, Saito S. Org Lett 2003; 5: 3875
- 5i Moreno-Vargas AJ, Jiménez-Barbero J, Robina I. J Org Chem 2003; 68: 4138
- 5j Songa X, Hollingsworth RI. Tetrahedron Lett 2006; 47: 229
- 5k Blot V, Jacquemard U, Reissig H-U, Kleuser B. Synthesis 2009; 759
- 5l Righi G, Ferrara A, Mari A, Bovicelli P. Synth Commun 2010; 40: 1650
- 5m Subrizi F, Benhamou L, Ward JM, Sheppard TD, Hailes HC. Angew Chem 2019; 131: 3894
- 5n Subrizi F, Benhamou L, Ward JM, Sheppard TD, Hailes HC. Angew Chem Int Ed 2019; 58: 3854
- 5o Swanson CRB, Ford GJ, Mattey AP, Gourbeyre L, Flitsch SL. ACS Cent Sci 2023; 9: 103
- 5p Sauer M, Kany AM, Götze S, Müller R, Beemelmanns C. Angew Chem 2024; 137: e202416036
- 5q Sauer M, Kany AM, Götze S, Müller R, Beemelmanns C. Angew Chem Int Ed 2024; 63: e202416036
- 5r Ďurina L, Kerti L, Lietecká M, Moncol J, Žideková I, Fischer R. Synthesis 2025; 57: 1213
- 6 Jotterand N, Vogel P, Schenk K. Helv Chim Acta 1999; 82: 821
- 7 Bernardi L, Bonini BF. et al. Tetrahedron Asymmetry 2004; 15: 245
- 8a Jäger V, Schwab W, Buss V. Angew Chem 1981; 93: 576
- 8b Jäger V, Schwab W, Buss V. Angew Chem Int Ed Engl 1981; 20: 601
- 8c Hümmer W, Dubois E, Gracza T, Jäger V. Synthesis 1997; 634
- 8d Jäger V, Frey W, Bathich Y. et al. Z Naturforsch 2010; 65b: 821
- 8e Bates RW. Acc Chem Res 2024; 57: 3044
- 9a Gilchrist TL. Chem Soc Rev 1983; 12: 53
- 9b Streith J, Defoin A. Synthesis 1994; 1107
- 9c Lyapkalo IM, Ioffe SL. Russ Chem Rev 1998; 67: 467
- 9d Tsoungas PG. Heterocycles 2002; 57: 915
- 9e Yamamoto Y, Yamamoto H. Eur J Org Chem 2006; 2031
- 9d Reissig H-U, Dugovič B, Zimmer R, Banert K. ed Science of Synthesis. Vol 41. Stuttgart: Thieme; 2009: 259
- 9f Carson CA, Kerr MA. Chem Soc Rev 2009; 38: 3051
- 9g Bodnar BS, Miller MJ. Angew Chem 2011; 123: 5746
- 9h Bodnar BS, Miller MJ. Angew Chem Int Ed 2011; 50: 5629
- 9i Reissig H-U, Zimmer R. In Molander GA. ed Science of Synthesis. Vol 33. Stuttgart: Thieme; 2007: 371
- 9j Sukhorukov AY, Ioffe SL. Chem Rev 2011; 111: 5004
- 9k Xu X, Doyle MP. Acc Chem Res 2014; 47: 1396
- 9l Utecht G, Jasiński M. Chem Heterocycl Compd 2016; 52: 143
- 9m Lopes SMM, Cardoso AL, Lemos A, Pinho e Melo TMVD. Chem Rev 2018; 118: 11324
- 9n Yan L-H, Li X, Wang B-G. Nat Prod Rep 2023; 40: 1874
- 10a Young IS, Kerr MA. Angew Chem 2003; 115: 3121
- 10b Young IS, Kerr MA. Angew Chem Int Ed 2003; 42: 3023
- 10c Kumarn S, Shawn DM, Longbottom DA, Ley SV. Org Lett 2005; 7: 4189
- 10d Carson CA, Young IS, Kerr MA. Synthesis 2008; 485
- 10e Lopes SMM, Lemos A, Pinho e Melo TMVD. Tetrahedron Lett 2010; 51: 6756
- 10f Wang X, Xu X, Zavalij PY, Doyle MP. J Am Chem Soc 2011; 133: 16402
- 10g Yioti EG, Mati IK, Arvanitidis AG, Massen ZS, Alexandraki ES, Gallos JK. Synthesis 2011; 142
- 10h Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP. Angew Chem 2012; 124: 6002
- 10i Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP. Angew Chem Int Ed 2012; 51: 5900
- 10j Yang H-B, Shi M. Org Biomol Chem 2012; 10: 8236
- 10k Zhang Y, Stephens D, Hernandez G, Mendoza R, Larionov OV. Chem Eur J 2012; 18: 16612
- 10l Vemula N, Pagenkopf BL. Eur J Org Chem 2015; 4900
- 10m Moczulski M, Drelich P, Albrecht L. Org Biomol Chem 2018; 16: 375
- 10n Cordier M, Archambeau A. Org Lett 2018; 20: 2265
- 10o Hu L, Rombola M, Rawal VH. Org Lett 2018; 20: 5384
- 10p Adly FG, Marichev KO, Jensen JA, Arman H, Doyle MP. Org Lett 2019; 21: 40
- 10q Xian M, Li C-Y, Zhang J. et al. Org Chem Front 2021; 8: 6215
- 10r Zisopoulou SA, Andreou T, Koftis TV, Gallos JK, Stathakis CI. Synthesis 2023; 55: 1507
- 10s Hazra A, Gosh A, Yadav N, Banerjee P. Chem Commun 2023; 59: 1133
- 10t Naulin E, Lombard M, Gandon V. et al. J Am Chem Soc 2023; 145: 26504
- 11a Hippeli C, Reissig H-U. Liebigs Ann Chem 1990; 475
- 11b Reissig H-U, Hippeli C, Arnold T. Chem Ber 1990; 123: 2403
- 11c Zimmer R, Collas M, Roth M, Reissig H-U. Liebigs Ann Chem 1992; 709
- 11d Reissig H-U, Homann K, Hiller F, Zimmer R. Synthesis 2007; 2681
- 11e Zimmer R, Collas M, Czerwonka R, Hain U, Reissig H-U. Synthesis 2008; 237
- 11f Zimmer R, Buchholz M, Collas M, Angermann J, Homann K, Reissig H-U. Eur J Org Chem 2010; 4111
- 12a Zimmer R. Synthesis 1993; 165
- 12b Brasholz M, Reissig H-U, Zimmer R. Acc Chem Res 2009; 42: 45
- 12c Zimmer R, Reissig H-U. Chem Soc Rev 2014; 43: 2888
- 12d Reissig H-U, Zimmer R. Synthesis 2017; 49: 3291
- 12e Schmiedel VM, Reissig H-U. Curr Org Chem 2019; 23: 2976
- 13a Schade W, Reissig H-U. Synlett 1999; 632
- 13b Helms M, Schade W, Pulz R. et al. Eur J Org Chem 2005; 1003
- 13c Bouché L, Kandziora M, Reissig H-U. Beilstein J Org Chem 2014; 10: 213
- 14a Pulz R, Al-Harrasi A, Reissig H-U. Synlett 2002; 817
- 14b Bressel B, Egart B, Al-Harrasi A, Pulz R, Reissig H-U, Brüdgam I. Eur J Org Chem 2008; 467
- 14c Dekaris V, Bressel B, Reissig H-U. Synlett 2010; 47
- 15a Pulz R, Al-Harrasi A, Reissig H-U. Org Lett 2002; 4: 2353
- 15b Al-Harrasi A, Fischer S, Zimmer R, Reissig H-U. Synthesis 2010; 304
- 15c Dekaris V, Reissig H-U. Synlett 2010; 42
- 15d Dekaris V, Pulz R, Al-Harrasi A, Lentz D, Reissig H-U. Eur J Org Chem 2011; 3210
- 15e Jasiński M, Lentz D, Reissig H-U. Beilstein J Org Chem 2012; 8: 662
- 15f Jasiński M, Lentz D, Moreno-Clavijo E, Reissig H-U. Eur J Org Chem 2012; 3304
- 16 Pfrengle F, Dekaris V, Schefzig L, Zimmer R, Reissig H-U. Synlett 2008; 2965
- 17a Al-Harrasi A, Reissig H-U. Angew Chem 2005; 117: 6383
- 17b Al-Harrasi A, Reissig H-U. Angew Chem Int Ed 2005; 44: 6227
- 17c Al-Harrasi A, Pfrengle F, Prisyazhnyuk V, Yekta S, Koóš P, Reissig H-U. Chem Eur J 2009; 15: 11632
- 17d Pfrengle F, Lentz D, Reissig H-U. Angew Chem 2009; 121: 3211
- 17e Pfrengle F, Lentz D, Reissig H-U. Angew Chem Int Ed 2009; 48: 3165
- 18a Koester DC, Holkenbrink A, Werz DB. Synthesis 2010; 3217
- 18b Pfrengle F, Reissig H-U. Chem Soc Rev 2010; 39: 549
- 18c Bouché L, Reissig H-U. Pure Appl Chem 2012; 84: 23
- 18d Compain P. Synlett 2023; 34: 1866
- 19a Pulz R, Schade W, Reissig H-U. Synlett 2003; 405
- 19b Moinizadeh N, Klemme R, Kansy M, Zimmer R, Reissig H-U. Synthesis 2013; 45: 2752
- 20 As an alternative method, we tried to prepare syn-6 by dehydration of 3a employing Burgess reagent (60 °C, 24 h); the starting material was re-isolated in 45% yield and the desired product syn-6 was obtained only in 23% yield.
- 21a Hippeli C, Reissig H-U. Liebigs Ann Chem 1990; 475
- 21b Zimmer R, Hoffmann M, Reissig H-U. Chem Ber 1992; 125: 2243
- 21c Pulz R, Watanabe T, Schade W, Reissig H-U. Synlett 2000; 983
- 22 Our investigations (Ref. 21c) revealed that during hydrogenolysis with palladium catalysts, the N-benzyl group is removed in the very first step, followed by saturation of the existing C=C double bonds, and finally cleavage of the N–O bond. On the other hand, with Raney nickel and hydrogen the N–O bond is cleaved in the first step.
- 23a Smith GV, Notheisz F. Hydrogenolysis of benzyl-nitrogen bonds. in Heterogeneous Catalysis in Organic Chemistry. Academic Press; 1999: 171-172
- 23b Fu X, Cook JM. J Am Chem Soc 1992; 114: 6910-6912
- 23c Fu X, Cook JM. J Org Chem 1993; 58: 661-672
- 23d Salta J. Dissertation, Freie Universität Berlin (Germany); 2014
- 23e Koóš P, Reissig H-U. Synthesis 2024; 56: 795
- 24a Chiara JL, Destabel C, Gallego P, Marco-Contelles J. J Org Chem 1996; 61: 359
- 24b Jung SH, Lee JE, Koh HY. Bull Korean Chem Soc 1998; 19: 33
- 24c Keck GE, Wager TT, McHardy SF. Tetrahedron 1999; 55: 11755
- 24d Pulz R, Al-Harrasi A, Reissig H-U. Org Lett 2002; 4: 2353
- 24e Revuelta J, Cicchi S, Brandi A. Tetrahedron Lett 2004; 45: 8375
- 24f Bressel B, Reissig H-U. Org Lett 2009; 11: 527
- 24g Parmeggiani C, Cardona F, Giusti L, Reissig H-U, Goti A. Chem Eur J 2013; 19: 10595
- 24h Pecchioli T, Cardona F, Reissig H-U, Zimmer R, Goti A. J Org Chem 2017; 82: 5835
- 25 Szostak M, Spain M, Procter DJ. Chem Soc Rev 2013; 42: 9155
- 26 Jasiński M, Watanabe T, Reissig H-U. Eur J Org Chem. 2013 605
- 27 A hydrogenolysis of compound 21 should lead to the expected “free” amino polyol; however, due to the high tendency of products of this type (see compound 25), decomposition of this reaction was not attempted.
- 28 The configuration of compound 24 allows a strain-free hydrogen bridge of the free hydroxyl group to cis-positioned oxygen of the ketal group. In contrast, a conceivable tricyclic ketal formed from compound 20 (derived from syn,anti-18) does not allow a likewise favorable hydrogen bridge.
- 29 CCDC 2443790 (3a) and CCDC 2443783 (7a), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.
- 30 Sheldrick GM. Acta Crystallogr 2015; A71: 3
- 31 Sheldrick GM. Acta Crystallogr 2015; C71: 3
Review:
Selected examples of syntheses of linear amino polyols:
Cyclic amino polyols:
Branched amino polyols:
Selected references:
Recent review:
Selected reviews on 1,2-oxazines:
1,2-Oxazines as natural products:
For typical original reports:
For selected contributions of our group:
Reviews on alkoxyallene chemistry of our group:
Selected references:
Selected reviews:
In this example, the major product derived from 9a contained an O–CH2–N moiety, which is probably formed by in situ generated formaldehyde. It is known that the solvent methanol is dehydrogenated to formaldehyde under hydrogenolysis conditions:
For a review on chemoselective reductions of functional groups by samarium diiodide, see: