Subscribe to RSS
DOI: 10.1055/a-2651-2367
Structurally Mapping Sodium-Mediated Synthesis of 1,4-Substituted Dihydropyridines: Nucleophilic Addition vs. Deprotonative Metalation
Supported by: Fundacion Ramon Areces
Supported by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 219318
Funding Information The authors acknowledge the financial support provided by the University of Bern, the Swiss National Science Foundation (SNSF) (project number 219318), and the Fundacion Ramón Areces (postdoctoral fellowship to DSR).

Dedication
This study is dedicated to Professor Paul Knochel, a true innovator in polar organometallic chemistry, on the occasion of his 70th birthday.
Abstract
The advent of organosodium reagents in organic synthesis has provided a more reactive and sustainable alternative to lithium derivatives, uncovering, in some cases, unique reactivities. Here we present the divergent reactivity of in situ generated benzyl sodium (BnNa), obtained by direct toluene sodiation, toward a selection of pyridine derivatives. Emphasizing its capacity as a nucleophile, selective C4-addition into some of these substrates followed by electrophilic interception has unlocked a new method to access 1,4-dihydropyridines. Contrastingly, when using picolines, selective benzylic metalation is observed for 2- and 4-picoline, whereas in the case of 3-picoline, a mixture of C4-addition and benzylic metalation is observed. Attempts to favor the nucleophilic addition using a borane additive revealed the formation of a sodium borate complex, which still shows a basic behavior by partial dissociation in solution. By trapping and characterizing key intermediate sodiated species, new mechanistic insights have been gained that advance the understanding of these sodium-mediated transformations.
Keywords
Organosodium reagents - Dihydropyridines - Metalation - Organometallic intermediates - Coordination effectsPublication History
Received: 24 June 2025
Accepted after revision: 08 July 2025
Accepted Manuscript online:
08 July 2025
Article published online:
21 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Harenberg JH, Reddy Annapureddy R, Karaghiosoff K, Knochel P. Angew Chem Int Ed 2022; 61: e202203807
- 2 Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Commun Chem 2021; 4: 76
- 3 Davison N, McMullin CL, Zhang L. et al. J Am Chem Soc 2023; 145: 6562
- 4 Asako S, Nakajima H, Takai K. Nat Catal 2019; 2: 297
- 5 Takahashi I, Tortajada A, Anderson DE, Ilies L, Hevia E, Asako S. Nat Synth 2025; 4: 816
- 6 Greenwood NN, Earnshaw A. Chemistry of the Elements. Elsevier Butterworth-Heinemann; 2017: 68
- 7 Anderson DE, Tortajada A, Hevia E. Angew Chem Int Ed 2024; 63: e202313556
- 8 Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. Angew Chem Int Ed 2021; 60: 14296
- 9 Anderson DE, Tortajada A, Hevia E. Angew Chem 2023; 135: e202218498
- 10 Anderson DE, Truong AHN, Hevia E. Chem Eur J 2024; 30: e202400492
- 11 Baillie SE, Clegg W, García-Álvarez P. et al. Chem Commun 2011; 47: 388
- 12 Mu BS, Cui XY, Zeng XP, Yu JS, Zhou J. Nat Commun 2021; 12: 2219
- 13 Sun Z, Yu S, Ding Z, Ma D. J Am Chem Soc 2007; 129: 9300
- 14 Nakajima K, Nojima S, Nishibayashi Y. Angew Chem Int Ed 2016; 55: 14106
- 15 Macdonald PA, Banerjee S, Kennedy AR. et al. Angew Chem Int Ed 2023; 62: e202304966
- 16 Wang PZ, Chen JR, Xiao WJ. Org Biomol Chem 2019; 17: 6936
- 17 Schade D, Lanier M, Willems E. et al. J Med Chem 2012; 55: 9946
- 18 Arhancet GB, Woodard SS, Dietz JD. et al. J Med Chem 2010; 53: 4300
- 19 Hantzsch A. Justus Liebigs Ann Chem 1882; 215: 1
- 20 Trost BM, Biannic B. Org Lett 2015; 17: 1433
- 21 Yedoyan J, Wurzer N, Klimczak U, Ertl T, Reiser O. Angew Chem Int Ed 2019; 131: 3632
- 22 Wei L, Wang M, Zhao Y. et al. Org Lett 2021; 23: 9625
- 23 Francis RF, Davis W, Wisener JT. J Org Chem 1974; 39: 59
- 24 Akiba K-Y, Iseki Y, Wada M. Tetrahedron Lett 1982; 23: 429
- 25 Wiklund T, Olsson S, Lennartson A. Monatsh Chem 2011; 142: 813
- 26 Robertson SD, Kennedy AR, Liggat JJ, Mulvey RE. Chem Commun 2015; 51: 5452
- 27 Orr SA, Kennedy AR, Liggat JJ, McLellan R, Mulvey RE, Robertson SD. Dalton Trans 2016; 45: 6234
- 28 Gilman H, McNinch HA. J Org Chem 1889; 1962: 27
- 29 Abramovitch RA, Poulton GA. J Chem Soc B 1969; 901
- 30 Hsu HH, Kang S, Chen CC, Sk MR, Thomas AA. Angew Chem Int Ed 2025; 64: e202424172
- 31 Bole LJ, Tortajada A, Hevia E. Angew Chem Int Ed 2022; 61: e202204262
- 32 Talk RA, El-Tunsi A, Robertson CC, Coldham I. Eur J Org Chem 2019; 31: 5294
- 33 Choi A, El-Tunsi A, Wang Y. et al. Chem Eur J 2021; 27: 11670
- 34 Mulvey RE, Downie TMH, Byrne KM. et al. Chem Eur J 2025; 31: e202500780
- 35 Ott H, Pieper U, Leusser D, Flierler U, Henn J, Stalke D. Angew Chem Int Ed 2009; 48: 2978
- 36 Kennedy AR, Mulvey RE, Urquhart RI, Robertson SD. Dalton Trans 2014; 43: 14265
- 37 Tschopp MS, Tortajada A, Hevia E. Angew Chem Int Ed 2025; 64: e202421736
- 38 Knupe-Wolfgang P, Mahn B, Hilt G. Org Lett 2024; 26: 6972
- 39 Tortajada A, Bole LJ, Mu M. et al. Chem Sci 2023; 14: 6538
- 40a Saida AB, Chardon A. et al. Angew Chem Int Ed 2019; 58: 16889
- 40b Omaña AA, Watt R, Zhou Y, Ferguson MJ, Rivard E. Inorg Chem 2022; 61: 16430
- 40c Loroño-González MA, Loroño-González DJM. Acta Crystallogr C 2025; 81: 131
- 41 Reidl TW, Bandar JS. J Am Chem Soc 2021; 143: 11939
- 42 Fricke PJ, Dolewski RD, McNally A. Angew Chem Int Ed 2021; 60: 21283
- 43 Barrios-Rivera J, Xu Y, Clarkson GJ, Wills M. Tetrahedron 2021; 103: 132562
- 44 Miao CB, Guan HR, Tang Y. et al. Org Lett 2021; 23: 8699
For borate complexes bearing a benzyl group see: