RSS-Feed abonnieren
DOI: 10.1055/a-2654-6280
The “Cancer Bush” Sutherlandia (syn. Lessertia) frutescens. An Example of Promotional Research, or Is There Scientific Merit?
Authors

Abstract
Sutherlandia (syn. Lessertia) frutescens is indigenous to the drier regions of southern Africa. Sutherlandia frutescens has a long history of traditional medicinal use and is credited with antiviral, antibacterial, antifungal, and anticancer properties. It is a very popular phytomedicine and, as the common name implies, is used as a prophylaxis and treatment of cancer. The objective of this review was to collate all published scientific data on the genera Sutherlandia and Lessertia regarding their antiproliferative properties and critically evaluate the data against established guidelines. Despite its use as traditional medicine, the potential of S. frutescens as a cancer treatment remains highly questionable. While in vitro studies suggest some potential antiproliferative effects, many studies lack positive controls and selectivity studies or use excessively high dosages, well above established guidelines, translating into unrealistic clinical applications. Consequently, these studies often appear overly optimistic and biased. Very few well-designed studies are available, and most research fails to meet established guidelines for evaluating selective cytotoxicity. Given these limitations and the absence of rigorous in vivo studies and/or clinical trials, future research may first focus on identifying chemovars with acceptable bioactivity and/or investigating the possibility of the presence of prodrugs by simulated gastrointestinal tract studies. Based on available data, it must be concluded that S. frutescens does not exhibit acceptable levels of bioactivity/selectivity, and keeping in mind possible herb-drug interactions and the serious nature of cancer, which causes over 10 million deaths annually, S. frutescens should not currently be recommended for use.
Keywords
anticancer - cytotoxic - Fabaceae - herbal medicine - marketing - Sutherlandia frutescens - traditional remedyPublikationsverlauf
Eingereicht: 04. März 2025
Angenommen: 26. Juni 2025
Artikel online veröffentlicht:
05. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Aboyade OM, Styger G, Gibson D, Hughes G. Sutherlandia frutescens: The meeting of science and traditional knowledge. J Altern Complement Med 2014; 20: 71-76
- 2 Chen L, Xu M, Gong Z, Zonyane S, Xu S, Makunga NP. Comparative cardio and developmental toxicity induced by the popular medicinal extract of Sutherlandia frutescens (L.) R. Br. detected using a zebrafish Tuebingen embryo model. BMC Complement Altern Med 2018; 18: 1-11
- 3 Viljoen A, Chen W, Mulaudzi N, Kamatou G, Sandasi M. Phytochemical Profiling of Commercial Important South African Plants. London: Academic Press, Elsevier; 2022
- 4 Van Wyk BE, Albrecht C. A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 2008; 119: 620-629
- 5 Smith A. A Contribution to South African Materia Medica: Chiefly from Plants in Use Among the Natives. 2nd ed, Lovedale, South Africa; JC Juta & Co: 1895.
- 6 Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd Edition. Edinburgh: E. and S. Livingstone Ltd.; 1962
- 7 Wicht WF. South African huismiddels. S Afr Med Rec 1918; 16: 306-310
- 8 Palmer E. The South African herbal. Cape Town: Tafelberg Publishers; 1985
- 9 Rood B. Uit die veldapteek. Cape Town: Tafelberg Publishers; 1994
- 10 Van Wyk BE, Gericke N. (eds.) Peopleʼs Plants. Pretoria, South Africa: Briza Publishers; 2000
- 11 Mills E, Cooper C, Seely D, Kanfer I. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr J 2005; 4: 1-6
- 12 Wilson D, Goggin K, Williams K, Gerkovich MM, Gqaleni N, Syce J, Bartman P, Johnson Q, Folk WR. Consumption of Sutherlandia frutescens by HIV-seropositive South African adults: An adaptive double-blind randomized placebo controlled trial. PLoS One 2015; 10: e0128522
- 13 Fu X, Li XC, Wang YH, Avula B, Smillie TJ, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA. Flavonol glycosides from the South African medicinal plant Sutherlandia frutescens . Planta Med 2010; 76: 178-181
- 14 Fu X, Li XC, Smillie TJ, Carvalho P, Mabusela W, Syce J, Johnson Q, Folk W, Avery MA, Khan IA. Cycloartane glycosides from Sutherlandia frutescens . J Nat Prod 2008; 71: 1749-1753
- 15 Mavimbela T, Vermaak I, Chen W, Viljoen A. Rapid quality control of Sutherlandia frutescens leaf material through the quantification of SU1 using vibrational spectroscopy in conjunction with chemometric data analysis. Phytochem Lett 2018; 25: 184-190
- 16 Avula B, Wang YH, Smillie TJ, Fu X, Li XC, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA. Quantitative determination of flavonoids and cycloartanol glycosides from aerial parts of Sutherlandia frutescens (L.) R. BR. by using LC-UV/ELSD methods and confirmation by using LC–MS method. J Pharm Biomed Anal 2010; 52: 173-180
- 17 Albrecht CF, Stander MA, Grobbelaar MC, Colling J, Kossmann J, Hills PN, Makunga N. LC–MS-based metabolomics assists with quality assessment and traceability of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). S Afr J Bot 2012; 82: 33-45
- 18 Zonyane S, Chen L, Xu MJ, Gong ZN, Xu S, Makunga NP. Geographic-based metabolomic variation and toxicity analysis of Sutherlandia frutescens LR Br.–An emerging medicinal crop in South Africa. Ind Crops Prod 2019; 133: 414-423
- 19 Tchegnitegni BT, Lerata MS, Beukes DR, Antunes EM. Sutherlandiosides E−K: Further cycloartane glycosides from Sutherlandia frutescens . Phytochem Lett 2024; 61: 66-74
- 20 Dykman EJ. De Suid Afrikaanse Kook-, Koek- en Resepte Boek, 14th improved impression. Paarl (Cape Colony), South Africa: Paarl Printers Ltd.; 1908
- 21 Ojewole JAO. Anticonvulsant property of Sutherlandia frutescens R.Br. (variety incana E.Mey.) [Fabaceae] shoot aqueous extract. Brain Res Bull 2008; 75: 126-132
- 22 Seier J, Mdhluli M, Dhansay M, Loza J, Laubscher R. A toxicity study of Sutherlandia leaf powder (Sutherlandia microphylla) consumption. Parow South Africa: Medical Research Council (MRC); 2002
- 23 Johnson Q, Syce J, Nell H, Rudeen K, Folk WR. A randomized, double-blind, placebo-controlled trial of Lessertia frutescens in healthy adults. PLoS Clin Trials 2007; 2: e16
- 24 Sia C. Spotlight on ethnomedicine: usability of Sutherlandia frutescens in the treatment of diabetes. Rev Diabet Stud 2004; 1: 145
- 25 Tai J, Cheung S, Chan E, Hasman D. In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. J Ethnopharmacol 2004; 93: 9-19
- 26 Chinkwo KA. Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol 2005; 98: 163-170
- 27 Steenkamp V, Gouws MC. Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer. S Afr J Bot 2006; 72: 630-633
- 28 Stander BA, Marais S, Steynberg TJ, Theron D, Joubert F, Albrecht C, Joubert AM. Influence of Sutherlandia frutescens extracts on cell numbers, morphology and gene expression in MCF-7 cells. J Ethnopharmacol 2007; 112: 312-318
- 29 Stander A, Marais S, Stivaktas V, Vorster C, Albrecht C, Lottering ML, Joubert AM. In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line. J Ethnopharmacol 2009; 124: 45-60
- 30 Vorster C, Stander A, Joubert A. Differential signaling involved in Sutherlandia frutescens-induced cell death in MCF-7 and MCF-12A cells. J Ethnopharmacol 2012; 140: 123-130
- 31 Mqoco TV, Visagie MH, Albrecht C, Joubert AM. Differential cellular interaction of Sutherlandia frutescens extracts on tumorigenic and non-tumorigenic breast cells. S Afr J Bot 2014; 90: 59-67
- 32 Leisching G, Loos B, Nell T, Engelbrecht AM. Sutherlandia frutescens treatment induces apoptosis and modulates the PI3-kinase pathway in colon cancer cells. S Afr J Bot 2015; 100: 20-26
- 33 Lin H, Jackson GA, Lu Y, Drenkhahn SK, Brownstein KJ, Starkey NJ, Lamberson WR, Fritsche KL, Mossine VV, Besch-Williford CL, Folk WR. Inhibition of Gli/hedgehog signaling in prostate cancer cells by “cancer bush” Sutherlandia frutescens extract. Cell Biol Int 2016; 40: 131-142
- 34 van der Walt NB, Zakeri Z, Cronjé MJ. The induction of apoptosis in A375 malignant melanoma cells by Sutherlandia frutescens . Evid Based Complement Alternat Med 2016; 2016: 4921067
- 35 Omoruyi SI, Enogieru AB, Ekpo OE. Cytotoxic and apoptosis-inducing effects of Sutherlandia frutescens in neuroblastoma cells. J Afr Assoc Physiol Sci 2018; 6: 136-144
- 36 Zonyane S, Fawole OA, La Grange C, Stander MA, Opara UL, Makunga NP. The implication of chemotypic variation on the anti-oxidant and anti-cancer activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from different geographic locations. Antioxidants 2020; 9: 152
- 37 Smit T. Anticancer efficacy of selected South African phytomedicines in a three-dimensional colorectal cancer model [Dissertation]. Potchefstroom: North-West University; 2019
- 38 Gouws C, Smit T, Willers C, Svitina H, Calitz C, Wrzesinski K. Anticancer potential of Sutherlandia frutescens and Xysmalobium undulatum in LS180 colorectal cancer mini-tumors. Molecules 2021; 26: 605
- 39 Motadi LR. Screening methanolic extracts of Sutherlandia spp (Cancer Bush) as anti-tumor agents and their effects on anti-apoptotic genes: Anti-tumor of Sutherlandia spp. Iran J Pharm Res 2020; 16: 45-58
- 40 Van der Kooy F. Artemisia afra and COVID-19, the media storm versus the current state-of-the-art. Rev Bras Farmacogn 2024; 34: 1265-1275
- 41 Verpoorte R, Houghton PJ, Heinrich M, Mukherjee PK, Schmeda Hirschmann G, van Staden J, Yesilada E. Editorial. J Ethnopharmacol 2006; 103: 309-310
- 42 Petersen EJ, Nguyen A, Brown J, Elliott JT, Clippinger AJ, Gordon J, Kleinstreuer N, Roesslein M. Characteristics to consider when selecting a positive control material for an in vitro assay. ALTEX 2021; 38: 365-376
- 43 Skerman NB. The apoptosis inducing effects of Sutherlandia spp. extracts on an oesophageal cancer cell line. [Dissertation]. Johannesburg: University of Johannesburg; 2011
- 44 Butterweck V, Nahrstedt A. What is the best strategy for preclinical testing of botanicals? A critical perspective. Planta Med 2012; 78: 747-754
- 45 Vogel D, Loots E, Oladimeji O, Gouws C, van der Kooy F. The anti-neoplastic activity of Artemisia afra in breast cancer cell lines. S Afr J Bot 2023; 157: 115-121
- 46 Agarwal A, DʼSouza P, Johnson TS, Dethe SM, Chandrasekaran CV. Use of in vitro bioassays for assessing botanicals. Curr Opin Biotechnol 2014; 25: 39-44
- 47 Gertsch J. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 2009; 122: 177-183
- 48 Pritchetta JC, Naesens L, Montoya J. Treating HHV-6 infections, the laboratory efficacy and clinical use of anti-HHV-6 agents. In: Flamand L, Lautenschlager I, Krueger G, Ablashi D (eds.) Human Herpes Viruses HHV-6A, HHV-6B, and HHV-7. Diagnosis and Clinical Management. 3th ed. Amsterdam: Elsevier; 2014: 311-331
- 49 Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol 2021; 46: 273-307
- 50 López-Lázaro M. Two preclinical tests to evaluate anticancer activity and to help validate drug candidates for clinical trials. Oncoscience 2015; 2: 91
- 51 López-Lázaro M. How many times should we screen a chemical library to discover an anticancer drug?. Drug Discov Today 2015; 2: 167-169
- 52 Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 2006; 106: 290-302
- 53 Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016; 12: 4-12
- 54 Zang R, Zhang X, Sun J, Yang ST. In vitro 3-D multicellular models for cytotoxicity assay and drug screening. Process Biochem 2016; 51: 772-780
- 55 van der Kooy F, Sullivan SE. The complexity of medicinal plants: The traditional Artemisia annua formulation, current status and future perspectives. J Ethnopharmacol 2013; 150: 1-13
- 56 Grkovic T, Akee RK, Thornburg CC, Trinh SK, Britt JR, Harris MJ, Evans JR, Kang U, Ensel S, Henrich CJ, Gustafson KR, Schneider JP, OʼKeefe BR. National Cancer Institute (NCI) program for natural products discovery: Rapid isolation and identification of biologically active natural products from the NCI prefractionated library. ACS Chem Biol 2020; 15: 1104-1114
- 57 Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33: 1582-1614
- 58 Tahtah Y, Wubshet SG, Kongstad KT, Heskes AM, Pateraki I, Møller BL, Jäger AK, Staerk D. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida . Fitoterapia 2016; 110: 52-58
- 59 Tu Y. The discovery of artemisinin (Qinghaosu) and its derivatives: From traditional Chinese medicine to modern antimalarial drugs. Chin Med J 2016; 129: 2429-2435
- 60 Cui S, Wang X, Wang G, Wang R, Yang C. A network pharmacology approach to investigate the anti-inflammatory mechanism of effective ingredients from Salvia miltiorrhiza . Int Immunopharmacol 2020; 81: 106040
- 61 Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro model: A transformative model in drug development and precision medicine. Clin Transl Sci 2024; 17: e13695
- 62 Kostrzewski T, Maraver P, Ouro-Gnao L, Levi A, Snow S, Miedzik A, Rombouts K, Hughes D. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun 2020; 4: 77-91
- 63 Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132: 235-251
- 64 Hu F, Wang D, Huang H, Hu Y, Yin P. Bridging the gap between target-based and cell-based drug discovery with a graph generative multitask model. J Chem Inf Model 2022; 62: 6046-6056
- 65 Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022; 27: 349
- 66 Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175: 113795
- 67 Sengupta A, Schmid S, Grangier N, Dorn A, Hebestreit M, Hugi A, Žajdlíková K, Herbst A, Losada-Oliva P, Ortolf-Wahl H, Krebs P. A next-generation system for smoke inhalation integrated with a breathing lung-on-chip to model human lung responses to cigarette exposure. Sci Rep 2025; 15: 1-9
- 68 Katiyar C, Gupta A, Kanjilal S, Katiyar S. Drug discovery from plant sources: An integrated approach. Ayu 2012; 33: 10-19
- 69 Chen T, Yang M, Cui G, Tang J, Shen Y, Liu J, Yuan Y, Guo J, Huang L. IMP: Bridging the gap for medicinal plant genomics. Nucleic Acids Res 2024; 52: D1347-D1354
- 70 Fasinu PS, Gutmann H, Schiller H, James AD, Bouic PJ, Rosenkranz B. The potential of Sutherlandia frutescens for herb-drug interaction. Drug Metab Dispos 2013; 41: 488-497