Subscribe to RSS
DOI: 10.1055/a-2662-9672
The Olive Polyphenol Hydroxytyrosol Enhances Autophagy and Heme Oxygenase-1 Expression in Aortic Endothelial Cells and Reduces Arterial Stiffness ex vivo
Stef Lauwers is supported by the Research Council of the University of Antwerp (BOF UAntwerp ID: 42325). Melissa Van Praet is a predoctoral fellow of the Fund for Scientific Research (FWO)-Flanders (11J3423N and 11J3425N). Cédric H. G. Neutel is a postdoctoral fellow supported by FWO-Flanders (1255025N) and a Marie Skłodowska-Curie Actions-COFUND YUFE4Postdocs fellowship. Lynn Roth is funded by BOF UAntwerp (ID: 45846).

Abstract
Age-related arterial stiffening is a hallmark of vascular ageing and a key driver of cardiovascular disease. Oxidative stress, impaired autophagy, and extracellular matrix remodelling play an important role in the progression of aortic stiffening. Hydroxytyrosol (HT), a phenolic compound in olives, has demonstrated antioxidant properties and the ability to modulate autophagy, positioning it as a potential therapeutic for vascular ageing. In this study, we investigated the effects of HT on autophagy flux and antioxidant protein expression in human aortic endothelial cells (HAoECs). In parallel, we examined the impact of HT on arterial stiffness ex vivo using isolated aortic segments from wild-type (WT) and Fbn1C1039G+/- mice, a model of elastin fragmentation.
HT treatment (50 and 100 µM; 18 h) enhanced autophagy flux in HAoECs, evidenced by increased LC3-II and p62 turnover, and reduced mTOR activity. Additionally, HT upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Ex vivo treatment of aortic segments from WT and Fbn1C1039G+/- mice with HT (50 µM; 18 h) restored IP3-mediated contractions and reduced aortic stiffness in Fbn1C1039G+/- aortas, as demonstrated by a decreased Petersonʼs modulus. Although HT did not significantly affect collagen or elastin content or elastic fibre breaks in the aortic wall, it notably increased HO-1 protein levels in Fbn1C1039G+/- aortas.
These findings demonstrate the potential of HT to mitigate oxidative stress, enhance autophagy, and reduce arterial stiffness, making it a promising nutraceutical for addressing age-related vascular dysfunction. Further long-term studies are needed to elucidate the molecular mechanisms and evaluate its sustained benefits in vivo.
Keywords
arterial stiffness - elastin - autophagy - heme oxygenase-1 - oxidative stress - vascular ageing - Olea europaea - OleaceaePublication History
Received: 31 March 2025
Accepted after revision: 08 July 2025
Article published online:
22 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Laurent S, Boutouyrie P. Arterial stiffness and hypertension in the elderly. Front Cardiovasc Med 2020; 7: 544302
- 2 Lyle AN, Raaz U. Killing me unsoftly: Causes and mechanisms of arterial stiffness. Arterioscler Thromb Vasc Biol 2017; 37: e1-e11
- 3 Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236-1241
- 4 Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J Am Coll Cardiol 2010; 55: 1318-1327
- 5 Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92: 102122
- 6 Lacolley P, Regnault V, Laurent S. Mechanisms of arterial stiffening: From mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol 2020; 40: 1055-1062
- 7 Mikhed Y, Daiber A, Steven S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 2015; 16: 15918-15953
- 8 Chandrasekaran A, Idelchik M, Melendez JA. Redox control of senescence and age-related disease. Redox Biol 2017; 11: 91-102
- 9 Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320: H2080-H2100
- 10 Ryter SW. Heme oxygenase-1: An anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants (Basel) 2022; 11: 555
- 11 Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19: 349-364
- 12 Grootaert MO, da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GR, Martinet W, Schrijvers DM. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 2015; 11: 2014-2032
- 13 De Munck DG, Leloup AJA, De Moudt S, De Meyer GRY, Martinet W, Fransen P. Mouse aortic biomechanics are affected by short-term defective autophagy in vascular smooth muscle cells. J Physiol Sci 2022; 72: 7
- 14 Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Sorli JV, Martinez JA, Fito M, Gea A, Hernan MA, Martinez-Gonzalez MA, Investigators PS. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018; 378: e34
- 15 Covas MI, de la Torre R, Fito M. Virgin olive oil: A key food for cardiovascular risk protection. Br J Nutr 2015; 113 Suppl 2: S19-28
- 16 Souza PAL, Marcadenti A, Portal VL. Effects of olive oil phenolic compounds on inflammation in the prevention and treatment of coronary artery disease. Nutrients 2017; 9: 1087
- 17 Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci 2016; 17: 843
- 18 Yang X, Jing T, Li Y, He Y, Zhang W, Wang B, Xiao Y, Wang W, Zhang J, Wei J, Lin R. Hydroxytyrosol attenuates LPS-induced acute lung injury in mice by regulating autophagy and sirtuin expression. Curr Mol Med 2017; 17: 149-159
- 19 Wang W, Jing T, Yang X, He Y, Wang B, Xiao Y, Shang C, Zhang J, Lin R. Hydroxytyrosol regulates the autophagy of vascular adventitial fibroblasts through the SIRT1-mediated signaling pathway. Can J Physiol Pharmacol 2018; 96: 88-96
- 20 Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 2004; 114: 172-181
- 21 Emrich F, Penov K, Arakawa M, Dhablania N, Burdon G, Pedroza AJ, Koyano TK, Kim YM, Raaz U, Connolly AJ, Iosef C, Fischbein MP. Anatomically specific reactive oxygen species production participates in Marfan syndrome aneurysm formation. J Cell Mol Med 2019; 23: 7000-7009
- 22 Neutel CHG, Wesley CD, De Meyer GRY, Martinet W, Guns PJ. The effect of cyclic stretch on aortic viscoelasticity and the putative role of smooth muscle focal adhesion. Front Physiol 2023; 14: 1218924
- 23 Lu HY, Zhu JS, Xie J, Zhang Z, Zhu J, Jiang S, Shen WJ, Wu B, Ding T, Wang SL. Hydroxytyrosol and oleuropein inhibit migration and invasion via induction of autophagy in ER-positive breast cancer cell lines (MCF7 and T47D). Nutr Cancer 2021; 73: 350-360
- 24 Santarelli R, Pompili C, Gilardini Montani MS, Evangelista L, Gonnella R, Cirone M. 3, 4-dihydroxyphenylethanol (DPE or hydroxytyrosol) counteracts ERK1/2 and mTOR activation, pro-inflammatory cytokine release, autophagy and mitophagy reduction mediated by benzo[a]pyrene in primary human colonic epithelial cells. Pharmaceutics 2022; 14: 663
- 25 Kumar AV, Mills J, Lapierre LR. Selective Autophagy Receptor p 62/SQSTM1, a Pivotal Player in Stress and Aging. Front Cell Dev Biol 2022; 10: 793328
- 26 Katsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1–Nrf2 pathway by p 62/SQSTM1. Curr Opin Toxicol 2016; 1: 54-61
- 27 Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 2015; 22: 377-388
- 28 Yang HH, van Breemen C, Chung AW. Vasomotor dysfunction in the thoracic aorta of Marfan syndrome is associated with accumulation of oxidative stress. Vascul Pharmacol 2010; 52: 37-45
- 29 Chung AW, Au Yeung K, Cortes SF, Sandor GG, Judge DP, Dietz HC, van Breemen C. Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br J Pharmacol 2007; 150: 1075-1083
- 30 Chung AW, Au Yeung K, Sandor GG, Judge DP, Dietz HC, van Breemen C. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and − 9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res 2007; 101: 512-522
- 31 de la Fuente-Alonso A, Toral M, Alfayate A, Ruiz-Rodriguez MJ, Bonzon-Kulichenko E, Teixido-Tura G, Martinez-Martinez S, Mendez-Olivares MJ, Lopez-Maderuelo D, Gonzalez-Valdes I, Garcia-Izquierdo E, Mingo S, Martin CE, Muino-Mosquera L, De Backer J, Nistal JF, Forteza A, Evangelista A, Vazquez J, Campanero MR, Redondo JM. Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12: 2628
- 32 Oller J, Mendez-Barbero N, Ruiz EJ, Villahoz S, Renard M, Canelas LI, Briones AM, Alberca R, Lozano-Vidal N, Hurle MA, Milewicz D, Evangelista A, Salaices M, Nistal JF, Jimenez-Borreguero LJ, De Backer J, Campanero MR, Redondo JM. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med 2017; 23: 200-212
- 33 Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 2018; 15: 292-316
- 34 Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, Xiang X, Kingery JR, Lewis RK, Li Q, Rokosh DG, Ford R, Spinale FG, Riggs DW, Srivastava S, Bhatnagar A, Bolli R, Prabhu SD. Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 2010; 121: 1912-1925
- 35 Hofmann A, Muglich M, Wolk S, Khorzom Y, Sabarstinski P, Kopaliani I, Egorov D, Horn F, Brunssen C, Giebe S, Hamann B, Deussen A, Morawietz H, Poitz DM, Reeps C. Induction of heme oxygenase-1 is linked to the severity of disease in human abdominal aortic aneurysm. J Am Heart Assoc 2021; 10: e022747
- 36 De Munck DG, Leloup AJA, De Meyer GRY, Martinet W, Fransen P. Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall. Pflug Arch 2020; 472: 1031-1040
- 37 Gonzalez-Santiago M, Fonolla J, Lopez-Huertas E. Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol Res 2010; 61: 364-370
- 38 Kim KH, Ki MR, Min KH, Pack SP. Advanced delivery system of polyphenols for effective cancer prevention and therapy. Antioxidants (Basel) 2023; 12: 1048
- 39 Seeland U, Nemcsik J, Lonnebakken MT, Kublickiene K, Schluchter H, Park C, Pucci G, Mozos I, Bruno RM. Sex and Gender VascAgeNet Expert Group. Sex and gender aspects in vascular ageing – Focus on epidemiology, pathophysiology, and outcomes. Heart Lung Circ 2021; 30: 1637-1646
- 40 Leloup AJ, Van Hove CE, Kurdi A, De Moudt S, Martinet W, De Meyer GR, Schrijvers DM, De Keulenaer GW, Fransen P. A novel set-up for the ex vivo analysis of mechanical properties of mouse aortic segments stretched at physiological pressure and frequency. J Physiol 2016; 594: 6105-6115
- 41 Bosman M, Favere K, Neutel CHG, Jacobs G, De Meyer GRY, Martinet W, Van Craenenbroeck EM, Guns PDF. Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicol Lett 2021; 346: 23-33
- 42 Neutel CHG, Corradin G, Puylaert P, De Meyer GRY, Martinet W, Guns PJ. High pulsatile load decreases arterial stiffness: An ex vivo study. Front Physiol 2021; 12: 741346
- 43 Leloup AJA, Van Hove CE, De Moudt S, De Meyer GRY, De Keulenaer GW, Fransen P. Vascular smooth muscle cell contraction and relaxation in the isolated aorta: A critical regulator of large artery compliance. Physiol Rep 2019; 7: e13934
- 44 van Langen J, Fransen P, Van Hove CE, Schrijvers DM, Martinet W, De Meyer GR, Bult H. Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. Eur J Pharmacol 2012; 696: 111-119
- 45 Hendrickx JO, De Moudt S, Van Dam D, De Deyn PP, Fransen P, De Meyer GRY. Altered stress hormone levels affect in vivo vascular function in the hAPP23(±) overexpressing mouse model of Alzheimerʼs disease. Am J Physiol Heart Circ Physiol 2021; 321: H905-H919