RSS-Feed abonnieren
DOI: 10.1055/a-2665-2211
Therapeutic Potential of Carnosic Acid in Alopecia: A Mechanistic Perspective
Authors

Abstract
Alopecia, characterised by partial or complete hair loss, significantly affects the psychological and social well-being of individuals. Current FDA-approved treatments, such as topical minoxidil and oral finasteride, often present limitations, including skin irritation and suboptimal efficacy, compromising patient adherence. In recent years, natural compounds have garnered attention as potential alternatives, with carnosic acid emerging as a promising candidate due to its multifaceted biological activities. Carnosic acid, a diterpenic polyphenol predominantly found in rosemary (Rosmarinus officinalis) and sage (Salvia officinalis), exhibits potent antioxidant, anti-inflammatory, anti-androgenic, neuroprotective, and hair follicle-regenerative properties. Despite its therapeutic potential, its poor solubility and stability in conventional formulations limit its clinical application. This review comprehensively explores the mechanisms through which carnosic acid exerts its effects in alopecia management, focusing on its antioxidant capacity, anti-inflammatory responses, inhibition of dihydrotestosterone activity, promotion of hair follicle regeneration, and neuroprotective actions. The findings highlight carnosic acidʼs potential as a natural, effective, and safer alternative for alopecia treatment.
Keywords
alopecia - carnosic acid - Lamiaceae Rosmarinus officinalis - Salvia officinalis antioxidant - anti-inflammatory - anti-androgenic - hair follicle regenerationPublikationsverlauf
Eingereicht: 15. März 2025
Angenommen: 23. Juli 2025
Artikel online veröffentlicht:
08. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Marahatta S, Agrawal S, Adhikari BR. Psychological impact of alopecia areata. Dermatol Res Pract 2020; 2020: 8879343
- 2 Chen S, Xie X, Zhang G, Zhang Y. Comorbidities in androgenetic alopecia: A comprehensive review. Dermatol Ther (Heidelb) 2022; 12: 2233-2247
- 3 Gupta AK, Talukder M. Topical finasteride for male and female pattern hair loss: Is it a safe and effective alternative?. J Cosmet Dermatol 2022; 21: 1841-1848
- 4 Meziane H, Zraibi L, Albusayr R, Bitari A, Oussaid A, Hammouti B, Touzani R. Rosmarinus officinalis Linn.: Unveiling its multifaceted nature in nutrition, diverse applications, and advanced extraction methods. J.Umm Al-Qura Univ. Appll Sci 2024; 11: 1-29
- 5 Rambwawasvika H, Dzomba P, Gwatidzo L. Alopecia types, current and future treatment. J Dermatol Cosmetol 2021; 5: 93-99
- 6 Al Aboud AM, Syed HA, Zito PM. Alopecia. In StatPearls. Available online; 2024. Available online: 2024 Feb 26. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538178/
- 7 Zhang HL, Qiu XX, Liao XH. Dermal papilla cells: From basic research to translational applications. Biology (Basel) 2024; 13: 842
- 8 Singh R, Kumar P, Kumar D, Aggarwal N, Chopra H, Kumar V. Alopecia areata: review of epidemiology, pathophysiology, current treatments and nanoparticulate delivery system. Ther Deliv 2024; 15: 193-210
- 9 Xiang H, Xu S, Zhang W, Xue X, Li Y, Lv Y, Chen J, Miao X. Dissolving microneedles for alopecia treatment. Colloids Surf B Biointerfaces 2023; 229: 113475
- 10 Arora P, Shukla R. Microneedles along with conventional therapies: An in-depth observational review in alopecia areata treatment. J Drug Deliv Sci Technol 2024; 95: 105627
- 11 Elsebay SA, Nada HF, Sultan NS, El DA. Comparative histological and immunohistochemical study on the effect of platelet rich plasma/minoxidil, alone or in combination, on hair growth in a rat model of androgenic alopecia. Tissue Cell 2022; 75: 101726
- 12 Tiwari A, Kumar S, Choudhir G, Singh G, Gangwar U, Sharma V, Srivastava RK, Sharma S. Bioactive metabolites of edible mushrooms efficacious against androgenic alopecia: Targeting SRD5A2 using computational approach. J Herb Med 2022; 36: 100611
- 13 Rehan ST, Khan Z, Mansoor H, Shuja SH, Hasan MM. Two-way association between alopecia areata and sleep disorders: A systematic review of observational studies. Ann Med Surg 2022; 84: 104820
- 14 Huang J, Jian J, Li T, Li M, Luo K, Deng S, Tang Y, Liu F, Zhao Z, Shi W, Li J. Dupliumab therapy for alopecia areata: A case series and review of the literature. J Dermatolog Treat 2024; 35: 2312245
- 15 Zarbo A, Shwayder T. Loose anagen hair syndrome. J Pediatr 2018; 199: 282
- 16 Jerjen R, Koh WL, Sinclair R, Bhoyrul B. Low‐dose oral minoxidil improves global hair density and length in children with loose anagen hair syndrome. Br J Dermatol 2021; 184: 977-978
- 17 Segawa Y, Yamasaki K, Otake E, Kikuchi K, Aiba S. Short anagen syndrome: a unique short hair syndrome without any characteristic hair morphological abnormality. J Dermatol 2020; 47: e349-351
- 18 Cheng YP, Chen YS, Lin SJ, Hsiao CH, Chiu HC, Chan JY. Minoxidil improved hair density in an Asian girl with short anagen syndrome: a case report and review of literature. Int J Dermatol 2016; 55: 1268-1271
- 19 Savci U, Senel E, Oztekin A, Sungur M, Erel O, Neselioglu S. Ischemia-modified albumin as a possible marker of oxidative stress in patients with telogen effluvium. An Bras Dermatol 2020; 95: 447-451
- 20 Yin GO, Siong-See JL, Wang EC. Telogen Effluvium–a review of the science and current obstacles. J Dermatol Sci 2021; 101: 156-163
- 21 Abdullah EM, Tawfik A, Fadel M, Alsharnoubi J, Fadeel DA, Abdallah N. Photodynamic therapy of tinea capitis in children using curcumin loaded in nanospanlastics: A randomized controlled comparative clinical study. J Drug Deliv Sci Technol 2022; 74: 103496
- 22 Donati A, Wu II. Extra-follicular cutaneous manifestations of frontal fibrosing alopecia. An Bras Dermatol 2024; 99: 875-886
- 23 Senna MM, Peterson E, Jozic I, Chéret J, Paus R. Frontiers in lichen planopilaris and frontal fibrosing alopecia research: Pathobiology progress and translational horizons. JID Innov 2022; 2: 100113
- 24 Harries MJ, Jimenez F, Izeta A, Hardman J, Panicker SP, Poblet E, Paus R. Lichen planopilaris and frontal fibrosing alopecia as model epithelial stem cell diseases. Trends Mol Med 2018; 24: 435-448
- 25 Doche I, Hordinsky M, Wilcox GL, Valente NS, Romiti R. Substance P in keratosis follicularis spinulosa decalvans. JAAD Case Reports 2015; 1: 327-328
- 26 Malki L, Sarig O, Romano MT, Méchin MC, Peled A, Pavlovsky M, Warshauer E, Samuelov L, Uwakwe L, Briskin V, Mohamad J. Variant PADI3 in central centrifugal cicatricial alopecia. N Engl J Med 2019; 380: 833-841
- 27 Dlova NC, Salkey KS, Callender VD, McMichael AJ. Central centrifugal cicatricial alopecia: New insights and a call for action. J Investig Dermatol Symp Proc 2017; 18: 54-56
- 28 Rossi M, Kentosh J. Erosive pustular dermatosis of the scalp with resolution after initiation of dialysis. JAAD Case Rep 2024; 53: 146-148
- 29 LaCour M, Allen T, Wilkerson M, Nguyen AV. A case of erosive pustular dermatosis of the scalp in a pediatric patient. JAAD Case Rep 2019; 5: 118-120
- 30 Birtić S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. Phytochemistry 2015; 115: 9-19
- 31 Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: An effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206: 107288
- 32 Cortese K, Daga A, Monticone M, Tavella S, Stefanelli A, Aiello C, Bisio A, Bellese G, Castagnola P. Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine 2016; 23: 679-685
- 33 Bahri S, Jameleddine S, Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed Pharmacother 2016; 84: 569-582
- 34 National Center for Biotechnology Information. PubChem Compound Summary for CID 65126, Carnosic Acid. https://pubchem.ncbi.nlm.nih.gov/compound/Carnosic-Acid Accessed Aug. 5, 2025
- 35 Doolaege EH, Raes K, De Vos F, Verhé R, De Smet S. Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats. Plant Foods Hum Nutr 2011; 66: 196-202
- 36 Almuqati RR, Alamri AS, Almuqati NR. Knowledge, attitude, and practices toward sun exposure and use of sun protection among non-medical, female, university students in Saudi Arabia: A cross-sectional study. Int J Womens Dermatol 2019; 5: 105-109
- 37 Takayama KS, Monteiro MC, Saito P, Pinto IC, Nakano CT, Martinez RM, Thomaz DV, Verri jr. WA, Baracat MM, Arakawa NS, Russo HM. Rosmarinus officinalis extract-loaded emulgel prevents UVB irradiation damage to the skin. An Acad Bras Cienc 2022; 94: e20201058
- 38 Park M, Han J, Lee CS, Heung Soo B, Lim KM, Ha H. Carnosic acid, a phenolic diterpene from rosemary, prevents UV‐induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes. Exp Dermatol 2013; 22: 336-341
- 39 Luis JC, Pérez RM, González FV. UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chem 2007; 101: 1211-1215
- 40 Fristiohady A, Asasutjarit R, Theeramunkong S, Al-Ramadan W, Haruna LA, Rahmatika NS, Baharum SN, Sahidin I. Phytochemical profile and anticancer activity from medicinal plants against melanoma skin cancer: a review. Indones J Sci Technol 2022; 7: 405-470
- 41 Cattaneo L, Cicconi R, Mignogna G, Giorgi A, Mattei M, Graziani G, Ferracane R, Grosso A, Aducci P, Schininà ME, Marra M. Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells. PLoS One 2015; 10: e0132439
- 42 Argüelles A, Sánchez-Fresneda R, Martínez-Mármol E, Lozano JA, Solano F, Argüelles JC. A specific mixture of propolis and carnosic acid triggers a strong fungicidal action against Cryptococcus neoformans . Antibiotics 2021; 10: 1395
- 43 Gonçalves C, Fernandes D, Silva I, Mateus V. Potential anti-inflammatory effect of Rosmarinus officinalis in preclinical in vivo models of inflammation. Molecules 2022; 27: 609
- 44 Pereira RB, Rahali FZ, Nehme R, Falleh H, Jemaa MB, Sellami IH, Ksouri R, Bouhallab S, Ceciliani F, Abdennebi-Najar L, Pereira DM. Anti-inflammatory activity of essential oils from Tunisian aromatic and medicinal plants and their major constituents in THP-1 macrophages. Food Res Int 2023; 167: 112678
- 45 Lin C, Zhang X, Xiao J, Zhong Q, Kuang Y, Cao Y, Chen Y. Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans. Food Funct 2019; 10: 1398-1410
- 46 Tripathi L, Kumar P, Swain K, Pattnaik S. Clinical applications of essential oils. Inamuddin (Ed). Essential Oils: Extraction Methods and Applications: 2023. Inamuddin (Ed.). 933-951 https://doi.org/10.1002/9781119829614.ch40
- 47 Hines CB. Herbal medications used to treat fever. Nursing Clinics 2021; 56: 91-107
- 48 Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated rosemary essential oil into nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 2019; 47: 980-988
- 49 Hadizadeh-Talasaz F, Mardani F, Bahri N, Rakhshandeh H, Khajavian N, Taghieh M. Effect of Rosemary cream on episiotomy wound healing in primiparous women: A randomized clinical trial. BMC Complement Med Ther 2022; 22: 226
- 50 Ufomadu P. Complementary and alternative supplements: A review of dermatologic effectiveness for androgenetic alopecia. Proc (Bayl Univ Med Cent) 2024; 37: 111-117
- 51 Huang D, Gong ZY, Liu SC, Zheng XP, Kyaw KM, Lin BJ. Panax notoginseng saponins promote hair follicle growth in mice via Wnt/β‐Catenin signaling pathway. Chem Biol Drug Des 2023; 101: 1416-1424
- 52 Eid AM, Jaradat N, Issa L, Abu-Hasan A, Salah N, Dalal M, Mousa A, Zarour A. Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus Officinalis) essential oil and its Nanoemulgel. Eur J Integr Med 2022; 55: 102175
- 53 Boufetacha M, Ayad A, Thiebault N, Boussetta N, Gharibi E, Benali M. Selective extraction of carnosic acid, carnosol, and rosmarinic acid from Rosmarinus officinalis L. using supercritical fluid and their antioxidant activity. J Supercrit Fluids 2024; 212: 106344
- 54 Liu Y, Zhang Y, Hu M, Li YH, Cao XH. Carnosic acid alleviates brain injury through NF-κB-regulated inflammation and caspase-3-associated apoptosis in high fat-induced mouse models. Mol Med Rep 2019; 20: 495-504
- 55 Park MY. Carnosic acid disrupts toll-like receptor 2 signaling pathway in Pam 3 CSK 4-stimulated macrophages. Toxicol Environ Health Sci 2015; 7: 224-230
- 56 Günther M, Karygianni L, Argyropoulou A, Anderson AC, Hellwig E, Skaltsounis AL, Wittmer A, Vach K, Al-Ahmad A. The antimicrobial effect of Rosmarinus officinalis extracts on oral initial adhesion ex vivo. Clin Oral Investig 2022; 26: 4369-4380
- 57 Maione F, Cantone V, Pace S, Chini MG, Bisio A, Romussi G, Pieretti S, Werz O, Koeberle A, Mascolo N, Bifulco G. Anti‐inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions. Br J Pharmacol 2017; 174: 1497-1508
- 58 Moradi M, Boojar MM, Saberi M, Salkuyeh HR, Ghorbani M, Amanpour H, Salem F. Comparison of analgesic effect of rosmarinic acid with piroxicam in mice. Int j Basic Sci Med 2022; 7: 28-33
- 59 Mirza FJ, Zahid S, Holsinger RD. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules 2023; 28: 2306
- 60 Alam W, Hussain Y, Ahmad S, Ali A, Khan H. Neuroprotective effect of essential oils. In: Khan H, Aschner M, Mirzaei H (eds.). Phytonutrients and neurological disorder. 2023: 305-333
- 61 Akbari S, Sohouli MH, Ebrahimzadeh S, Ghanaei FM, Hosseini AF, Aryaeian N. Effect of rosemary leaf powder with weight loss diet on lipid profile, glycemic status, and liver enzymes in patients with nonalcoholic fatty liver disease: A randomized, double‐blind clinical trial. Phytother Res 2022; 36: 2186-2196
- 62 Musolino V, Macrì R, Cardamone A, Tucci L, Serra M, Lupia C, Maurotti S, Mare R, Nucera S, Guarnieri L, Marrelli M. Salvia rosmarinus spenn (Lamiaceae) hydroalcoholic extract: Phytochemical analysis, antioxidant activity and in vitro evaluation of fatty acid accumulation. Plants 2023; 12: 3306
- 63 Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 2017; 117: 10043-10120
- 64 Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep 2022; 56: 2
- 65 Du F, Li J, Zhang S, Zeng X, Nie J, Li Z. Oxidative stress in hair follicle development and hair growth: Signalling pathways, intervening mechanisms and potential of natural antioxidants. J Cell Mol Med 2024; 28: e18486
- 66 Alavi MS, Fanoudi S, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. An updated review of protective effects of rosemary and its active constituents against natural and chemical toxicities. Phytother Res 2021; 35: 1313-1328
- 67 Kesika P, Sivamaruthi BS, Thangaleela S, Bharathi M, Chaiyasut C. Role and mechanisms of phytochemicals in hair growth and health. Pharmaceuticals 2023; 16: 206
- 68 Danisman B, Cicek B, Yildirim S, Bolat I, Kantar D, Golokhvast KS, Nikitovic D, Tsatsakis A, Taghizadehghalehjoughi A. Carnosic acid ameliorates indomethacin-induced gastric ulceration in rats by alleviating oxidative stress and inflammation. Biomedicines 2023; 11: 829
- 69 Crozier RW, Yousef M, Coish JM, Fajardo VA, Tsiani E, MacNeil AJ. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J Biol Chem 2023; 299: 102867
- 70 Tsai YF, Yang SC, Hsu YH, Chen CY, Chen PJ, Syu YT, Lin CH, Hwang TL. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci 2023; 321: 121334
- 71 Wang LC, Wei WH, Zhang XW, Liu D, Zeng KW, Tu PF. An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid. Front Pharmacol 2018; 9: 370
- 72 Wan SS, Li XY, Liu SR, Tang S. The function of carnosic acid in lipopolysaccharides-induced hepatic and intestinal inflammation in poultry. Poult Sci 2024; 103: 103415
- 73 Ielciu I, Filip GA, Sevastre-Berghian AC, Bâldea I, Olah N-K, Burtescu RF, Toma VA, Moldovan R, Oniga I, Hanganu D. Effects of a Rosmarinus officinalis L. extract and Rosmarinic acid in improving streptozotocin-induced aortic tissue damages in rats. Nutrients 2025; 17: 158
- 74 Lin G, Li N, Li D, Chen L, Deng H, Wang S, Tang J, Ouyang W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int Immunopharmacol 2023; 116: 109819
- 75 Veenstra JP, Vemu B, Tocmo R, Nauman MC, Johnson JJ. Pharmacokinetic analysis of carnosic acid and carnosol in standardized rosemary extract and the effect on the disease activity index of DSS-induced colitis. Nutrients 2021; 13: 773
- 76 Yi-Bin W, Xiang L, Bing Y, Qi Z, Fei-Tong J, Minghong W, Xiangxiang Z, Le K, Yan L, Ping S, Yufei G. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimerʼs disease model. Cell Death Dis 2022; 13: 318
- 77 Iorio R, Celenza G, Petricca S. Multi-target effects of β-caryophyllene and carnosic acid at the crossroads of mitochondrial dysfunction and neurodegeneration: from oxidative stress to microglia-mediated neuroinflammation. Antioxidants 2022; 11: 1199
- 78 Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther 2024; 9: 53
- 79 Migayron L, Boniface K, Seneschal J. Vitiligo, from physiopathology to emerging treatments: A review. Dermatol Ther (Heidelb) 2020; 10: 1185-1198
- 80 Habtemariam S. Anti-inflammatory therapeutic mechanisms of natural products: insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 2023; 11: 545
- 81 Sadick NS, Callender VD, Kircik LH, Kogan S. New insight into the pathophysiology of hair loss triggers a paradigm shift in the treatment approach. J Drugs Dermatol 2017; 16: s135-140
- 82 Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: Combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets 2019; 23: 755-771
- 83 Xue-Gang XU, Hong-Duo CH. Prostanoids and hair follicles: Implications for therapy of hair disorders. Acta Derm Venereol 2018; 98: 318-323
- 84 Yang X, Zhang W, Zhao X, Hou W, Wu Y, Feng D, Meng Z, Zhou X. Changes and significance of Th1/Th2 and Treg/Th17 cells and their cytokines in patients with alopecia areata. Exp Cell Res 2024; 442: 114259
- 85 Zarling JA, Brunt VE, Vallerga AK, Li W, Tao A, Zarling DA, Minson CT. Nitroxide pharmaceutical development for age-related degeneration and disease. Front Genet 2015; 6: 325
- 86 Palakkal S, Cortial A, Frušić-Zlotkin M, Soroka Y, Tzur T, Nassar T, Benita S. Effect of cyclosporine A-tempol topical gel for the treatment of alopecia and anti-inflammatory disorders. Int J Pharm 2023; 642: 123121
- 87 Huang D, Gong ZY, Liu SC, Zheng XP, Kyaw KM, Lin BJ. Panax notoginseng saponins promote hair follicle growth in mice via Wnt/β‐Catenin signaling pathway. Chem Biol Drug Des 2023; 101: 1416-1424
- 88 Li S, Huang Y, Sun Y, Lu T, Dong Y, Yu S, Zhang X, Hu H. Panax notoginseng saponins loaded W/O microemulsion for alopecia therapy with panthenol as cosurfactant to reduce skin irritation. Int J Pharm 2024; 663: 124585
- 89 Polak-Witka K, Constantinou A, Schwarzer R, Helmuth J, Wiessner A, Hadam S, Kanti V, Rancan F, Andruck A, Richter C, Moter A. Identification of anti-microbial peptides and traces of microbial DNA in infrainfundibular compartments of human scalp terminal hair follicles. Eur J Dermatol 2021; 31: 22-31
- 90 Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: the key to alopecia areata management. J Investig Dermatol Symp Proc 2018; 19: 12-17
- 91 Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29: 703-725
- 92 Ru Q, Huang K, Yu R, Wu X, Shen J. Effects of Camellia oleifera seed shell polyphenols and 1, 3, 6-tri-O-galloylglucose on androgenic alopecia via inhibiting 5a-reductase and regulating Wnt/β-catenin pathway. Fitoterapia 2024; 177: 106116
- 93 Lai JJ, Chang P, Lai KP, Chen L, Chang C. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 2012; 304: 499-510
- 94 Li Q, Wang Y, Guo Q, Cao J, Feng Y, Ke X. Nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of tofacitinib for treating alopecia areata. J Control Release 2024; 372: 778-794
- 95 Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, Christiano AM. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 2015; 1: e1500973
- 96 Kokhabi P, Dadkhahfar S, Robati RM. Topical metformin as a novel therapy for alopecia areata due to its immunologic effects. Med Hypotheses 2023; 179: 111155
- 97 Speirs C, Williams JJ, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators?. Pharmacol Res 2018; 128: 88-100
- 98 Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, De Jong A, Harel S, DeStefano GM, Rothman L, Singh P. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 2014; 20: 1043-1049
- 99 Botchkarev VA, Kishimoto J. Molecular control of epithelial–mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 2003; 8: 46-55
- 100 Huang D, Gong ZY, Liu SC, Zheng XP, Kyaw KM, Lin BJ. Panax notoginseng saponins promote hair follicle growth in mice via Wnt/β‐Catenin signaling pathway. Chem Biol Drug Des 2023; 101: 1416-1424
- 101 Kleszczyński K, Zillikens D, Fischer TW. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2‐related factor 2 resulting in activation of phase‐2 antioxidant enzymes (γ‐GCS, HO‐1, NQO 1) in ultraviolet radiation‐treated normal human epidermal keratinocytes (NHEK). J Pineal Res 2016; 61: 187-197
- 102 Chen CC, Plikus MV, Tang PC, Widelitz RB, Chuong CM. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. J Mol Biol 2016; 428: 1423-1440
- 103 Elshall AA, Ghoneim AM, Abd-Elmonsif NM, Osman R, Shaker DS. Boosting hair growth through follicular delivery of melatonin through lecithin-enhanced Pickering emulsion stabilized by chitosan-dextran nanoparticles in testosterone induced androgenic alopecia rat model. Int J Pharm 2023; 639: 122972
- 104 Dong K, Goyarts E, Rella A, Pelle E, Wong YH, Pernodet N. Age associated decrease of MT-1 melatonin receptor in human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int J Mol Sci 2020; 21: 326
- 105 Liu D, Xu Q, Meng X, Liu X, Liu J. Status of research on the development and regeneration of hair follicles. Int J Med Sci 2024; 21: 80
- 106 Mirza FJ, Zahid S, Holsinger RD. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules 2023; 28: 2306
- 107 de Oliveira MR. The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol 2016; 53: 6155-6168
- 108 Ravaria P, Saxena P, Laksmi Bs S, Ranjan V, Abidi SW, Saha P, Ramamoorthy S, Ahmad F, Rana SS. Molecular mechanisms of neuroprotective offerings by rosmarinic acid against neurodegenerative and other CNS pathologies. Phytother Res 2023; 37: 2119-2143
- 109 Rezzani R, Favero G, Ferroni M, Lonati C, Moghadasian MH. A carnosine analog with therapeutic potentials in the treatment of disorders related to oxidative stress. PLoS One 2019; 14: e0215170
- 110 Lee EY, Nam YJ, Kang S, Choi EJ, Han I, Kim J, Kim DH, An JH, Lee S, Lee MH, Chung JH. The local hypothalamic–pituitary–adrenal axis in cultured human dermal papilla cells. BMC Mol Cell Biol 2020; 21: 42
- 111 Wang XQ, Tang YH, Zeng GR, Wu LF, Zhou YJ, Cheng ZN, Jiang DJ. Carnosic acid alleviates depression-like behaviors on chronic mild stressed mice via PPAR-γ-dependent regulation of ADPN/FGF9 pathway. Psychopharmacology (Berl) 2021; 238: 501-516
- 112 Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and skin: antioxidant activity and possible therapeutical role in cutaneous diseases. Antioxidants 2023; 12: 680
- 113 Nakagawa S, Hillebrand GG, Nunez G. Rosmarinus officinalis L. (rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics (Basel) 2020; 9: 149
- 114 Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023; 11: 1614 Erratum in: Microorganisms 2024; 12: 1961 Erratum in: Microorganisms 2024; 12: 1961
- 115 Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13: 1187831
- 116 Corbu VM, Gheorghe-Barbu I, Dumbravă AŞ, Vrâncianu CO, Şesan TE. Current insights in fungal importance–A comprehensive review. Microorganisms 2023; 11: 1384
- 117 Rahbardar MG, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020; 23: 1100
- 118 Hashem MM, Attia D, Hashem YA, Hendy MS, AbdelBasset S, Adel F, Salama MM. Rosemary and neem: An insight into their combined anti-dandruff and anti-hair loss efficacy. Sci Rep 2024; 14: 7780