RSS-Feed abonnieren
DOI: 10.1055/a-2677-6462
Isocyanoalkenes: Occurrence, Syntheses, and Reactivity
Authors
Gefördert durch: NSF 1953128
Funding Information Financial support from NSF (#1953128) is gratefully acknowledged.

Dedication
To Paul Knochel, whose creative genius has transformed functionalized organometallics into a new form of molecular artistry.
Abstract
Isocyanoalkenes are a largely underexplored subset of isocyanides whose natural occurrence, synthesis, and reactivity are elucidated in this review. The discussion begins with an overview of the biosynthesis and natural occurrence, which provides a valuable context for the synthetic approaches to these unusual π-substituted alkenes. Building on this foundation, the review explores the characteristic reactivity of isocyanoalkenes, which is shaped by the strong electron-withdrawing nature of the isocyanide group and an almost complete lack of π-conjugation. Two primary modes of reactivity are highlighted: conjugate additions – especially in systems containing additional electron-withdrawing substituents – and radical additions to the isocyanide, often followed by annulation via iminyl radical intermediates. Special attention is given to two particularly versatile isocyanoalkenes – β-dimethylaminoisocyanoacetates and β-bromoisocyanoacetates – which readily undergo nucleophilic addition–elimination–cyclization sequences to efficiently assemble nitrogen-containing heterocycles. Overall, this review underscores the synthetic potential of isocyanoalkenes and highlights their emerging value in the construction of diverse heterocyclic scaffolds.
Publikationsverlauf
Eingereicht: 05. Juni 2025
Angenommen nach Revision: 28. Juli 2025
Artikel online veröffentlicht:
08. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Edenborough MS, Herbert RB. Nat Prod Rep 1988; 5: 229-245
- 1b Garson MJ, Simpson JS. Nat Prod Rep 2004; 21: 164-179
- 1c Emsermann J, Kauhl U, Opatz T. Mar Drugs 2016; 14: 16
- 1d Schnermann M, Shenvi RA. Nat Prod Rep 2015; 32: 543-577
- 1e Hohlmann RM, Sherman DH. Nat Prod Rep 2021; 38: 1567-1588
- 2 Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Chem Rev 2021; 121: 10742-10788
- 3 Rothe W. Dtsch Med Wochenschr 1954; 79: 1080-1081
- 4 Ahrens CBFW, Bärwald G. PharmacoEconomics 1971; 26: 100-107
- 5a Sakai R, Nakamura T, Nishino T. et al. Bioorg Med Chem 2005; 13: 6388-6393
- 5b Chang CWJ. Prog Chem Org Nat Prod 2000; 3-189
- 6 Hübner I, Shapiro JA, Hoßmann J. et al. ACS Cent Sci 2021; 7: 488-498
- 7 Based on a series of SciFinder searches performed on 19 Jan. 2024
- 8 Emsermann J, Kauhl U, Opatz T. Mar Drugs 2016; 14: 1-83
- 9 Zhang X, Evanno L, Poupon E. Eur J Org Chem 2020; 1919-1929
- 10 Brady SF, Clardy J. Angew Chem, Int Ed 2005; 44: 7045-7048
- 11 Hillwig ML, Zhu Q, Liu X. ACS Chem Biol 2014; 9: 372-377
- 12 Chang W-C, Sanyal D, Huang J-L, Ittiamornkul K, Zhu Q, Liu X. Org Lett 2017; 19: 1208-1211
- 13 Yu C-P, Tang Y, Cha L. et al. J Am Chem Soc 2018; 140: 15190-15193
- 14 Zhu J, Lippa GM, Gulick AM, Tipton PA. Biochemistry 2015; 54: 2659-2669
- 15 Lim FY, Won T, Raffa N. et al. mBio 2018; 9: e00785-18
- 16 Achenbach H, Strittmatter H, Kohl W. Chem Ber 1972; 105: 3061-3066
- 17 Morino T, Nishimoto M, Itou N, Nishikiori T. J Antibiot 1994; 47: 1546-1548
- 18 Zapf S, Hossfeld M, Anke H, Velten R, Steglich W. J Antibiot 1995; 48: 36-41
- 19 Itoh J, Takeuchi Y, Gomi S, Inouye S. J Antibiot 1990; 43: 456-461
- 20 Crawford JM, Portmann C, Zhang X, Roeffaers MBJ, Clardy J. Proc Natl Acad Sci USA 2012; 109: 10821-10826
- 21 Liu W, Christenson SD, Standage S, Shen B. J Bacteriol 2008; 190: 6927-6930
- 22 Pérez-Victoria I, El Aouad N, González-Menéndez V. et al. J Nat Prod 2025; 88: 469-476
- 23 Isshiki K, Takahashi Y, Okada M. et al. J Antibiot 1987; 40: 1195-1198
- 24 Evans JR, Napier EJ, Yates P. J Antibiot 1976; 29: 850-852
- 25 Brady SF, Clardy J. Angew Chem Int Ed 2005; 44: 7063-7065
- 26 Kobayashi J, Tsuda M, Nemoto A, Tanaka Y, Yazawa K, Mikami Y. J Nat Prod 1997; 60: 719-720
- 27 Fujiwara A, Okuda T, Masuda S. et al. Agric Biol Chem 1982; 46: 1803-1809
- 28 Fukuyama T, Yung YM. Tetrahedron Lett 1981; 22: 3759-3760
- 29 Baldwin JE, Kelly DR, Ziegler CBJ. Chem Soc, Chem Commun 1984; 133-134
- 30 White AM, Pierens GK, Skinner-Adams T. et al. J Nat Prod 2015; 78: 1422-1427
- 31 Stratmann K, Moore RE, Bonjouklian R. et al. J Am Chem Soc 1994; 116: 9935-9942
- 32 Moore RE, Cheuk C, Qiang X. et al. J Org Chem 1987; 52: 1036-1043
- 33 Kim H, Lantvit D, Hwang CH. et al. Bioorg Med Chem 2012; 20: 5290-5295
- 34 Carmeli S, Moore RE, Patterson GML, Mori Y, Suzuki M. J Org Chem 1990; 55: 4431-4438
- 35 Marconi GG, Molloy BB, Nagarajan R, Martin JW, Deeter JB, Occolowitz JL. J Antibiot 1978; 31: 27-32
- 36a Fulton JR. Isocyanides and their Heteroanalogs (RZC). In: Comprehensive Organic Functional Group Transformations. 2nd ed. Vol 3. Elsevier; 2005: 705-730
- 36b Suginome M, Ito Y. Sci Synth 2012; 445-531
- 37 Altundas B, Marrazzo J-PR, Fleming FF. Org Biomol Chem 2020; 18: 6467-6482
- 38 Eliel EL, Masilamani D. Rev Lat Quinn 1970; 1: 120-122
- 39 Tian H, Holyoke Jr CW, Fleming FF. Org Lett 2022; 24: 8657-8661
- 40a Matteson DS, Bailey RA. J Am Chem Soc 1968; 90: 3761-3765
- 40b Matteson DS, Bailey RA. Chem Ind 1967; 191-192
- 41 King RB, Borodinsky L. Tetrahedron 1985; 41: 3235-3240
- 42 Bock H, Ugi I. J Prakt Chem 1997; 339: 385-389
- 43a Zinner G, Fehlhammer WP. Angew Chem Int Ed 1985; 24: 979-980
- 43b Lentz D. J Fluorine Chem 1984; 24: 523-530
- 44a Hagedorn I. Angew Chem 1961; 73: 26-27
- 44b Hagedorn I, Eholzer U, Etling H, Isonitrile V. Chem Ber 1965; 98: 193-201
- 45 Baldwin JE, Yamaguchi Y. Tetrahedron Lett 1989; 30: 3335-3338
- 46a Kobayashi K, Irisawa S, Akamatsu H. et al. Bull Chem Soc Jpn 1999; 72: 2307-2313
- 46b Kobayashi K, Akamatsu H, Takada K, Morikawa O, Konishi H. Tetrahedron Lett 1996; 37: 2437-2440
- 47 Fukuda T, Wagatsuma H, Kominami Y. et al. Chem Biodiversity 2016; 13: 1502-1510
- 48 Frippiat S, Sarre C, Baudequin C, Hoarau C, Bischoff L. J Org Chem 2022; 87: 7464-7473
- 49 Liu N, Cao S, Shen L. et al. Tetrahedron Lett 2009; 50: 1982-1985
- 50 Baldwin JE, Adlington RM, Chondrogianni J, Edenborough MS, Keeping JW, Ziegler CBJ. Chem Soc, Chem Commun 1985; 816-817
- 51 Baldwin JE, Chen D, Russell AT. Chem Commun 1997; 2389-2390
- 52a Nunami K, Yamada M, Fukui T, Matsumoto K. J Org Chem 1994; 59: 7635-7642
- 52b Suzuki M, Nunami K, Matsumoto K. et al. Chem Pharm Bull 1980; 28: 2374-2383
- 52c Suzuki M, Nunami K, Moriya T, Matsumoto K, Yoneda N. J Org Chem 1978; 43: 4933-4935
- 52d Schöllkopf U, Harms R, Hoppe D. Liebigs Ann Chem 1973; 1973: 611-618
- 52e Schöllkopf U, Gerhart F, Schröder R. Angew Chem, Int Ed 1969; 8: 672
- 53 Schöllkopf U, Schröder R, Blume E. Liebigs Ann Chem 1972; 766: 130-141
- 54 Schraff S, Trampert J, Pammer F. Inorg Chem 2020; 59: 17171-17183
- 55a Bull S, Stephens L. WO 2022/238694 A1 2022
- 55b Schöllkopf U, Schröder R, Stafforst D. Liebigs Ann Chem 1974; 44-53
- 56 Hoppe I, Schöllkopf U. Liebigs Ann Chem 1984; 600-607
- 57 Isshiki K, Takahashi Y, Sawa T, Naganawa H, Takeuchi T, Umezawa H. J Antibiot 1987; 40: 1199-1201
- 58 Isshiki K, Takahashi Y, Sawa T, Naganawa H, Takeuchi T, Umezawa H. J Antibiot 1987; 40: 1202-1203
- 59 Zinner G, Fehlhammer WP. Angew Chem, Int Ed Engl 1985; 24: 979-980
- 60 Spallarossa M, Wang Q, Riva R, Zhu J. Org Lett 2016; 18: 1622-1625
- 61 Treichel PM, Shaw DB. Inorg Chim Acta 1976; 16: 199-202
- 62 Van Leusen AM, Wildeman J. Rec Trav Pays-Bas 1982; 202-205
- 63 Van Leusen AM, Wildeman J, Moskal J, Van Hemert AW. Rec Trav Chim Pays-Bas 1985; 104: 177-183
- 64 O’Neil IA. In: Comprehensive Func Group Transformations Vol 3 1995; 693-726
- 65 Pirrung MC, Wang J. J Org Chem 2009; 74: 2958-2963
- 66 Richter JM, Ishihara Y, Masuda T. et al. J Am Chem Soc 2008; 130: 17938-17954
- 67 Chenera B, Chuang CP, Hart DJ, Lai CS. J Org Chem 1992; 57: 2018-2029
- 68 Baldwin JE, O’Neil IA. Synlett 1990; 603-604
- 69 Li Y, Fleming FF. Angew Chem, Int Ed 2016; 55: 14770-14773
- 70 El Kaïm L, Grimaud L, Schiltz A. Org Biomol Chem 2009; 7: 3024-3026
- 71 Saegusa T, Murase I, Ito Y. Tetrahedron 1971; 27: 3795-3801
- 72 Møllendal H, Samdal S, Matrane A, Guillemin J-C. J Phys Chem A 2011; 115: 7978-7983
- 73 Schöllkopf U, Stafforst D, Jentsch R. Liebigs Ann Chem 1977; 1977: 1167-1173
- 74a Pirrung MC, Ghorai S. J Am Chem Soc 2006; 128: 11772-11773
- 74b Bayh O, Awad H, Mongin F. et al. J Org Chem 2005; 70: 5190-5196
- 74c Miller RA, Smith RM, Karady S, Reamer RA. Tetrahedron Lett 2002; 43: 935-938
- 74d Boche G, Bosold F, Hermann B, Marsch M, Harms K, Lohrenz JCW. Chem Eur J 1998; 4: 814-817
- 74e Crowe E, Hossner F, Hughes MJ. Tetrahedron 1995; 51: 8889-8900
- 74f Whitney SE, Rickborn B. J Org Chem 1991; 56: 3058-3063
- 74g Dondoni A, Fantin G, Fogagnolo M, Medici A, Pedrini P. J Org Chem 1987; 52: 3413-3420
- 75 Herdeis C, Syväri J. Arch Pharm 1988; 321: 491-496
- 76 Banert K, Toth C. Angew Chem Int Ed 1995; 34: 1627-1629
- 77 Lentz D, Preugschat DJ. Chem Soc, Chem Commun 1992; 1523-1524
- 78 Buschmann J, Kleinhenz S, Lentz D. et al. Inorg Chem 2000; 39: 2807-2812
- 79 Hansch C, Leo A, Taft RW. Chem Rev 1991; 91: 165-195
- 80 Fleming FF, Wang Q. Chem Rev 2003; 103: 2035-2078
- 81 Schollkopf U, Meyer R. Liebigs Ann Chem 1977; 1174-1182
- 82 van Leusen D, Flentge E, van Leusen AM. Tetrahedron 1991; 47: 4639-4644
- 83 van Leusen AM, Schaart FJ, van Leusen D. Rec Trav Chim Pays-Bas 1979; 258-262
- 84 Moskal J, van Stralen R, Postma D, van Leusen AM. Tetrahedron Lett 1986; 27: 2173-2176
- 85 Chao A, Lujan-Montelongo JA, Fleming FF. Org Lett 2016; 18: 3062-3065
- 86a King RB, Efraty AJ. Chem Soc: Perkin I 1974; 1371-1373
- 86b King RB, Efraty A. J Am Chem Soc 1971; 93: 564-565
- 87 Saegusa T, Murase I, Ito Y. Bull Chem Soc Jpn 1972; 45: 1884-1888
- 88 Marrazzo JPR, Chao A, Li Y, Fleming FF. J Org Chem 2022; 87: 488-497
- 89 Marrazzo J-PR, Huynh T, Fleming FF. Synthesis 2024; 56: 2985-2992
- 90 Tian H, Marrazzo J-P, Huynh T, Fleming FF. J Org Chem 2025; 90: 4513-4517
- 91 von Rauge Schleyer P, Allerhand J. Am Chem Soc 1962; 84: 1322-1323
- 92a Gomes GP, Loginova Y, Vatsadze SZ, Alabugin IVJ. Am Chem Soc 2018; 140: 14272-14288
- 92b Minozzi M, Nanni D, Spagnolo P. Curr Org Chem 2007; 11: 1366-1384
- 93a Wang Z, Wei H, Du J, Zuo Z. Green Chem 2024; 26: 10804-10810
- 93b Li L, El Khoury A, Clement BO, Wu C, Harran PG. Org Lett 2022; 24: 2607-2612
- 93c Liu Y, Li S-J, Chen X-L. et al. Adv Synth Catal 2020; 362: 688-694
- 93d Evoniuk CJ, Gomes GDP, Ly M, White FD, Alabugin IV. J Org Chem 2017; 82: 4265-4278
- 93e Evoniuk CJ, Ly M, Alabugin IV. Chem Commun 2015; 51: 12831-12834
- 93f Mitamura T, Iwata K, Ogawa AJ. Org Chem 2011; 76: 3880-3887
- 93g Lamberto M, Corbett DF, Kilburn JD. Tetrahedron Lett 2003; 44: 1347-1349
- 93h Bachi MD, Bar-Ner N, Melman AJ. Org Chem 1996; 61: 7116-7124
- 93i Bachi MD, Balanov A, Bar-Ner NJ. Org Chem 1994; 59: 7752-7758
- 94 Lenoir I, Smith MLJ. Chem Soc: Perkin I 2000; 641-643
- 95 Zhang B, Studer A. Chem Soc Rev 2015; 44: 3505-3521
- 96a Lei J, Huang J, Zhu Q. Org Biomol Chem 2016; 14: 2593-2602
- 96b Sun X, Yu S. Synlett 2016; 27: 2659-2675
- 96c Minozzi M, Nanni D, Spagnolo P. Curr Org Chem 2007; 11: 1366-1384
- 97 Jiang H, Cheng Y, Wang R, Zhang Y, Yu S. Chem Commun 2014; 50: 6164-6167
- 98 Wang H, Yu Y, Hong X, Xu B. Chem Commun 2014; 50: 13485-13488
- 99 Mao H, Gao M, Liu B, Xu B. Org Chem Front 2016; 3: 516-521
- 100 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633-10640
- 101 Cheng Y, Yuan X, Jiang H. et al. Adv Synth Catal 2014; 356: 2859-2866
- 102 Tong K, Zheng T, Zhang Y, Yu S. Adv Synth Catal 2015; 357: 3681-3686
- 103 Liu Y, Kang Y, Wang H. et al. Tetrahedron Lett 2020; 61: 152348
- 104 Zhang B, Studer A. Org Biomol Chem 2014; 12: 9895-9898
- 105 Zhang B, Mück-Lichtenfeld C, Daniliuc CD, Studer A. Angew Chem Int Ed 2013; 52: 10792-10795
- 106 Liu Y, Zhang K, Jiang W. et al. Chem Asian J 2017; 12: 568-576
- 107 Ding F, Jiang Y, Lin K, Shi L. Org Biomol Chem 2018; 16: 1812-1815
- 108 Xu Y, Chen H, Li W, Xie Q, Yu L, Shao L. ChemistrySelect 2017; 2: 8033-8038
- 109 Xue D, Liu R, Zhang D. et al. Org Biomol Chem 2021; 19: 8597-8606
- 110 Yao Q, Zhou X, Zhang X, Wang C, Wang P, Li M. Org Biomol Chem 2017; 15: 957-971
- 111 Han D, Zhou X, Yao Q, Wang P, Li M. J Carbohydr Chem 2020; 39: 75-106
- 112 Xu Y, Chen H, Li W, Xie Q, Yu L, Shao L. Org Biomol Chem 2018; 16: 4996-5005
- 113 Xue D, Chen H, Xu Y. et al. Org Biomol Chem 2017; 15: 10044-10052
- 114 Pasto DJ, Krasnansky R, Zercher C. J Org Chem 1987; 52: 3062-3072
- 115 Qian P, Du B, Zhou J, Mei H, Han J, Pan Y. RSC Adv 2015; 5: 64961-64965
- 116 Xue D, Xue Y, Yu H, Shao L. Synthesis 2019; 51: 874-884
- 117 He Y, Wang X, Xiao J-A. et al. RSC Adv 2018; 8: 3036-3040
- 118 Lau HH, Schöllkopf U. Liebigs Ann Chem 1982; 2093-2095
- 119 Bossio R, Marcaccini S, Pepino R, Paoli P, Polo C. J Heterocycl Chem 1993; 30: 575-577
- 120 Bossio R, Marcaccini S, Pepino RJ. Chem Res: Synop 1993; 1
- 121 Paoli PJ. Heterocycl Chem 1994; 4: 729-732
- 122a Schöllkopf U, Porsch PH, Lau HH. Liebigs Ann Chem 1979; 1444-1446
- 122b Bloom JD, DiGrandi MJ, Dushin RG. et al. Bioorg Med Chem Lett 2003; 13: 2929-2932
- 123a Helal CJ, Lucas JC. Org Lett 2002; 4: 4133-4134
- 123b Atkinson KA, Beretta EE, Brown JA. et al. Bioorg Med Chem Lett 2011; 21: 1621-1625
- 124 Henkel B. Tetrahedron Lett 2004; 45: 2219-2221
- 125 Bienaymé H. Tetrahedron Lett 1998; 39: 4255-4258
- 126 Bienaymé H, Bouzid K. Tetrahedron Lett 1998; 39: 2735-2738
- 127a Kolb J, Beck B, Almstetter M, Heck S, Herdtweck E, Dömling A. Mol Divers 2003; 6: 297-313
- 127b Heck S, Dömling A. Synlett 2000; 424-426
- 128 Henkel B, Sax M, Dömling A. Tetrahedron Lett 2003; 44: 3679-3682
- 129 Kolb J, Beck B, Dömling A. Tetrahedron Lett 2002; 43: 6897-6901
- 130 Henkel B, Beck B, Westner B, Mejat B, Dömling A. Tetrahedron Lett 2003; 44: 8947-8950
- 131a Hiramatsu K, Nunami K-I, Hayashi K, Matsumoto K. Synthesis 1990; 781-782
- 131b Nunami K-I, Hiramatsu K, Hayashi K, Matsumoto K. Tetrahedron 1988; 44: 5467-5478
- 132 Nunami K, Yamada M, Fukui T, Matsumoto K. J Org Chem 1994; 59: 7636-7640
- 133a Bloom JD, DiGrandi MJ, Dushin RG. et al. Bioorg Med Chem Lett 2003; 13: 2929-2932
- 133b Schöllkopf U, Porsch P-H, Lau H-H. Liebigs Ann Chem 1979; 1444-1446
- 134 Yamada M, Fukui T, Nunami K. Tetrahedron Lett 1995; 36: 257-260
- 135 Yamada M, Fukui T, Nunami K. Synthesis 1995; 1365-1367
- 136a Pirrung MC, Ghorai S. J Am Chem Soc 2006; 128: 11772-11773
- 136b Maison W, Schlemminger I, Westerhoff O, Martens J. Bioorg Med Chem 2000; 8: 1343-1350
- 136c Maison W, Schlemminger I, Westerhoff O, Martens J. Bioorg Med Chem Lett 1999; 9: 581-584
- 136d Lindhorst T, Bock H, Ugi I. Tetrahedron 1999; 55: 7411-7420
- 136e Keating TA, Armstrong RW. J Am Chem Soc 1996; 118: 2574-2583
- 137 Quelhas A, Gazzeh H, Roisnel T, Trolez Y, Guillemin JC. Eur J Org Chem 2021; 6002-6005
- 138 Zwikker JW, Stephany RW. Synth Commun 1973; 3: 19-23
- 139 Kim SW, Bauer SM, Armstrong RW. Tetrahedron Lett 1998; 39: 7031-7034
- 140 Beck B, Hess S, Dömling A. Bioorg Med Chem Lett 2000; 10: 1701-1705
- 141 Bu X-B, Wang Z, Wang X-D, Meng X-H, Zhao Y-L. Adv Synth Catal 2018; 360: 2945-2951
- 142 Liu Y, Tan Q, Bao L. et al. Org Lett 2024; 26: 5043-5048
- 143 Marin-Luna M, Alajarin M. Eur J Org Chem 2020; 5496-5500
- 144 Xiong Z, Wang J, Wang Y, Luo S, Zhu Q. Org Chem Front 2017; 4: 1768-1771
- 145 Barnett BR, Figueroa JS. Chem Commun 2016; 52: 13829-13839
- 146 Chao A, Alwedi E, Fleming FF. Synthesis 2019; 51: 2122-2127