Synthesis 2025; 57(23): 3599-3605
DOI: 10.1055/a-2680-2438
Paper

Xanthate-Based Radical Addition/Spirocyclization on C2-Substituted Tryptamine-Derived Isonitriles

Authors

  • Enrique Becerril-Rodríguez

    1   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México (Ringgold ID: RIN7180)
  • Mario Castañón-García

    1   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México (Ringgold ID: RIN7180)
  • Luis D. Miranda

    1   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México (Ringgold ID: RIN7180)

Funding Information Financial support from CONAHCYT (Project CBF2023-2024-2227) is gratefully acknowledged.


Graphical Abstract

Abstract

A metal-free protocol for constructing spiroindolines via a radical cascade process is reported. The reaction cascade comprises a radical intermolecular addition to a tryptamine-derived isonitrile, followed by spirocyclization of the intermediate radical onto the C-3 position of the indole system, and concluding with a final oxidation step. Introducing a malonyl or acetoxyl group at the C-2 position of the indole system, along with the addition of a radical bearing an electron-withdrawing group, facilitated the formation of the enamine products. The use of the xanthate-mediated chemistry enabled the generation of primary and secondary electrophilic radicals derived from esters, nitriles, ketones, and lactones.



Publication History

Received: 08 May 2025

Accepted after revision: 08 August 2025

Accepted Manuscript online:
08 August 2025

Article published online:
09 September 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Vitaku E, Smith DT, Njardarson JT. J Med Chem 2014; 57: 10257-10274
  • 2 Powell NA, Kohrt JT, Filipski KJ. et al. Bioorg Med Chem Lett 2012; 22: 190-193
  • 3 Giustiniano M, Basso A, Mercalli V. et al. Chem Soc Rev 2017; 46: 1295-1357
  • 4 Lygin AV, de Meijere A. Angew Chem 2010; 49: 9094-9124
  • 5 Dömling A. Chem Rev 2006; 106: 17-89
  • 6 Saya JM, Roose TR, Peek J. et al. Angew Chem Int Ed 2018; 57: 15232-15236
  • 7 Zhao X, Liu X, Mei H, Guo J, Lin L, Feng X. Angew Chem 2015; 127: 4104-4107
  • 8 Tang S, Ding S, Li D. et al. Chem Commun 2021; 57: 10576-10579
  • 9 Liu Y-L, Chen G-S, Chen S-J. Angew Chem 2020; 59: 614-621
  • 10 Roose TR, McSorley F, Groenhuijzen B. et al. J Org Chem 2023; 88: 17345-17355
  • 11 Jiang S, Huang Y-X, Wang X-F, Xu X-P, Ji S-J. Org Chem Front 2023; 10: 1660-1668
  • 12 Wu M, Saya JM, Han P. et al. Chem Sci 2024; 15: 6867-6873
  • 13 Pérez VM, Fregoso-López D, Miranda LD. Tetrahedron Lett 2017; 58: 1326-1329
  • 14 James MJ, O’Brien P, Taylor RJK, Unsworth WP. Chem Eur J 2016; 22: 2856-2881
  • 15 Reyes-Gutiérrez PE, Torres-Ochoa RO, Martínez R, Miranda LD. Org Biomol Chem 2009; 7: 1388