Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis
DOI: 10.1055/a-2688-5421
DOI: 10.1055/a-2688-5421
Paper
Published as part of the Special Topic Romanian Chemists in Synthesis
“ExBoxes” with Fluorene and Carbazole Units. Synthesis, Structure Determination, and Formation of Host–Guest Complexes
Authors
Supported by: NextGenerationEU PNRR-C9-I8-CF16/2022
This work was financially supported by the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project COFUND-M-ERANET-3-COFFEE-317 and by the project “EVOLUTION” funded by European Union – Next Generation EU and the Romanian Government, under National Recovery and Resilience Plan for Romania, contract no 760033/23.05.2023, code PNRR-C9-I8-CF16/2022, through the Romanian Ministry of Research, Innovation and Digitalization, within Component 9, Investment I8.

Dedication
Dedicated to Academician Marius Andruh on the occasion of his 70th anniversary.
Abstract
The synthesis and the structural characterization of two new extended “boxes” exhibiting carbazole or fluorene units are reported. The ability of these tetracationic host molecules to form complexes with electron-rich guests was evaluated by computational methods and investigated by NMR and MS experiments.
Keywords
ExBoxes - Carbazole and fluorene derivatives - Host–guest complexes - NMR titrations - Molecular modelingPublication History
Received: 02 June 2025
Accepted after revision: 21 August 2025
Accepted Manuscript online:
21 August 2025
Article published online:
02 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Stoddart JF. Angew Chem Int Ed 2017; 56: 11094
- 1b Kay ER, Leigh DA, Zerbetto F. Angew Chem Int Ed 2007; 46: 72
- 1c Astumian RD. Chem Sci 2017; 8: 840
- 1d Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem Soc Rev 2017; 46: 2592
- 2a Odell B, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ. Angew Chem, Int Ed 1988; 27: 1547
- 2b Stoddart JF. Chem Soc Rev 1802; 2009: 38
- 2c Neira I, Blanco-Gómez A, Quintela JM, García MD, Peinador C. Acc Chem Res 2020; 53: 2336
- 3a Geuder W, Hünig S, Suchy A. Angew Chem Int Ed Engl 1983; 22: 489
- 3b Reissig H-U. Angew Chem Int Ed 2021; 60: 9180
- 3c Chen X-Y, Chen H.L, Stoddart JF. Angew Chem Int Ed 2023; 62: e202211387
- 4 Frasconi M, Fernando IR, Wu Y. et al. J Am Chem Soc 2015; 137: 11057
- 5 Barnes JC, Juríček M, Strutt NL. et al. J Am Chem Soc 2013; 135: 183
- 6a Dale EJ, Vermeulen NA, Juríček M. et al. Acc Chem Res 2016; 49: 262
- 6b Barnes JC, Dale EJ, Prokofjevs A. et al. J Am Chem Soc 2015; 137: 2392
- 6c Wang Z, Bai W, Tong J. et al. Chem Commun 2016; 52: 10365
- 6d Juríček M, Barnes JC, Dale EJ. et al. J Am Chem Soc 2013; 135: 12736
- 6e Barnes JC, Juríček M, Vermeulen NA, Dale EJ, Stoddart JF. J Org Chem 2013; 78: 11962
- 7 Dale EJ, Vermeulen NA, Thomas AA. et al. J Am Chem Soc 2014; 136: 10669
- 8 Duan H, Li Y, Li Q. et al. Angew Chem Int Ed 2020; 59: 10101
- 9 Hartlieb KJ, Blackburn AK, Schneebeli ST. et al. Chem Sci 2014; 5: 90
- 10 Cetin MM, Beldjoudi Y, Roy I. et al. J Am Chem Soc 2019; 141: 18727
- 11 Li Y, Li N, Li G. et al. J Am Chem Soc 2023; 145: 9118
- 12 Guo Q-H, Zhou J, Mao H. et al. J Am Chem Soc 2020; 142: 5419
- 13 Wu H, Chen Y, Zhang L. et al. J Am Chem Soc 2019; 141: 1280
- 14 Wang H, Fang S, Wu G. et al. J Am Chem Soc 2020; 142: 20182
- 15 Chen X-Y, Shen DK, Cai K. et al. J Am Chem Soc 2020; 142: 20152
- 16a Ji X, Chi X, Ahmed M, Long L, Sessler JL. Acc Chem Res 2019; 52: 1915
- 16b Chi X, Cen W, Queenan JA. et al. J Am Chem Soc 2019; 141: 6468
- 16c Wang C-L, Zhou L, Zhang L. et al. Chem Commun 2017; 53: 3669
- 16d Shukla J, Illathvalappil R, Kumar S. et al. Org Lett 2022; 24: 3038
- 17 Penty SE, Zwijnenburg MA, Orton GRF. et al. J Am Chem Soc 2022; 144: 12290
- 18 Balog M, Grosu I, Plé G, Ramondenc Y, Condamine E, Varga R. J Org Chem 2004; 69: 1337
- 19 Bogdan N, Grosu I, Benoît G. et al. Org Lett 2006; 8: 2619
- 20 Bogdan N, Condamine E, Toupet L, Ramondenc Y, Silaghi-Dumitrescu I, Grosu I. Tetrahedron Lett 2008; 49: 5204
- 21 Cîrcu M, Soran A, Hădade ND, Rednic M, Terec A, Grosu I. J Org Chem 2013; 78: 8722
- 22a Grosu IG, Pop L, Miclӑuş M. et al. Cryst Growth Des 2020; 20: 3429
- 22b Pop L, Grosu IG, Miclăuş M. et al. Cryst Growth Des 2021; 21: 1045
- 23 Goeb S, Sallé M. Acc Chem Res 2021; 54: 1043
- 24a García-García A, Oyarzabal I, Cepeda J. et al. New J Chem 2018; 42: 832
- 24b Yan B, Han D, Boissière O, Ayotte P, Zhao Y. Soft Matter 2011; 2013: 9
- 25 Zhao H-K, Zhang F. J Chem Eng Data 2010; 55: 3955
- 26a Ulatowski F, Dąbrowa K, Bałakier, Jurczak TJ. J Org Chem 2016; 81: 1746
- 26b Thordarson P. Chem Soc Rev 2011; 40: 1305
- 26c Hibbert DB, Thordarson P. Chem Commun 2016; 52: 12792
- 26d http://supramolecular.org/
- 27 Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian09, Revision E.01. Wallingford, CT: Gaussian, Inc.; 2009
- 28 Rappoport D, Furche F. J Chem Phys 2010; 133: 134105
- 29 Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys 2010; 132 (15) 154104
- 30 Pracht P, Grimme S, Bannwarth C. et al. J Chem Phys 2024; 160: 114110
- 31 Pracht P, Bohle F, Grimme S. Phys Chem Chem Phys 2020; 22: 7169-7192
- 32 Lu T, Chen F. J Comput Chem 2012; 33: 580-592
- 33 Lu T, Chen Q. J Comput Chem 2022; 43: 539-555
- 34 Baerends EJ, Aguirre NF, Austin ND. et al. J Chem Phys 2025; 162: 162501
- 35 Bickelhaupt FM, Baerends EJ. In: Reviews in Computational Chemistry. John Wiley & Sons, Ltd: 2000: 1-86
- 36 Nakajo T, Kumagai J, Kusaka S. et al. J Am Chem Soc 2021; 143: 8129
- 37 Ooyama Y, Yamaguchi N, Imae I, Komaguchi K, Ohshita J, Harima Y. Chem Commun 2013; 49: 2548