RSS-Feed abonnieren
DOI: 10.1055/a-2722-7093
Synthesis and Reactivity of Organozinc Reagents Derived From γ-Bromocrotonate Ester in Continuous Flow
Autoren
This research was supported in part by the Natural Science and Engineering Research Council of Canada (NSERC) under a discovery grant from NSERC (Canada) (RGPIN-2019-06113, RGPIN-2025-04411), the Canada Foundation for Innovation (22007-2008,41475-2021), and the FRQNT Centre in Green Chemistry and Catalysis (CGCC) (FRQNT-2020-RS4-265155-CCVC), and the Université de Montréal.
Gefördert durch: Institute Courtois
Gefördert durch: Natural Sciences and Engineering Research Council of Canada RGPIN-2019-06113,RGPIN-2025-04411
Gefördert durch: Université de Montréal
Gefördert durch: Canada Foundation for Innovation 22007-2008,41475-2021

Dedication
This paper is dedicated to Professor Paul Knochel on the occasion of his 70th birthday.
Abstract
The Reformatsky reaction is a well-established method for the synthesis of β-hydroxyesters, a structural motif commonly found in natural products. While continuous-flow adaptations of the traditional Reformatsky reaction, which offer improved safety and efficiency, have been reported, related transformations using γ-bromocrotonate esters have not yet been explored in flow chemistry. Under batch conditions, the corresponding organozinc reagent can yield both γ- and α-adducts, depending on the metal employed and the specific reaction parameters. In this study, we report the first Reformatsky-type reaction in continuous flow using ethyl γ-bromocrotonate, with conditions optimized to favor γ-selectivity and the synthesis of homoallylic alcohols. Zinc dust was utilized as the reagent, and the reaction scope was demonstrated with a variety of carbonyl compounds, including in a four-step synthesis of piperine. Furthermore, the synthesis of ethyl γ-bromocrotonate was efficiently accomplished under continuous-flow conditions on a multigram scale via a Wohl–Ziegler bromination.
Keywords
Organozinc - Zinc column - Flow chemistry - Homoallylic alcohols - Reformatsky reaction - α,β,γ,δ-Insaturated product - Piperine - Natural productPublikationsverlauf
Eingereicht: 27. August 2025
Angenommen nach Revision: 13. Oktober 2025
Accepted Manuscript online:
13. Oktober 2025
Artikel online veröffentlicht:
14. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dekker J, Budzelaar PHM, Boersma J, Van der Kerk GJM, Spek AJ. Organometallics 1984; 3: 1403
- 2 Ruppert JF, White JD. J Org Chem 1974; 39: 269
- 3 Loh G, Tanigawara R, Shaik SM, Sa-ei K, Wong L, Sharratt PN. Org Process Res Dev 2012; 16: 958
- 4a Huck L, Berton M, de la Hoz A, Díaz-Ortiz A, Alcázar J. Green Chem 2017; 19: 1420
- 4b Berton M, Huck L, Alcázar J. Nat Protoc 2018; 13: 324
- 5 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem Rev 2017; 117: 11796
- 6 Yadav JS, Mysorekar SV. Synth Commun 1989; 19: 1057
- 7 Gedye R, Arora P, Khalil A. Can J Chem 1975; 53: 1943
- 8a Couffignal R, Gaudemar M. J Organomet Chem 1973; 60: 209
- 8b Bellassoued F, Dardoize F, Frangin Y, Gaudemar M. J Organomet Chem 1981; 219 (01) C1
- 9 Bellassoued M, Gaudemar M, El Borgi A, Baccar B. J Organomet Chem 1985; 280: 165
- 10 Bellassoued M, Habbachi F, Gaudemar M. Tetrahedron 1987; 43: 1785
- 11 Lei B, Fallis AG. Can J Chem 1991; 69: 1450
- 12 van Dorp DA, Arens JF. Recl Trav Chim Pays-Bas 1946; 65: 338
- 13 Hudlicky T, Short RP. J Org Chem 1982; 47: 1522
- 14 Short RP, Revol JM, Ranu BC, Hudlicky T. J Org Chem 1983; 48: 4453
- 15 Hudlicky T, Frazier JO, Kwart LD. Tetrahedron Lett 1985; 26: 3523
- 16 Hudlicky T, Frazier JO, Seoane G. et al. J Am Chem Soc 1986; 108: 3755
- 17 Snider BB, Allentoff AJ. J Org Chem 1991; 56: 321
- 18 Jones ERH, O’Sullivan DG, Whiting MC. J Chem Soc 1949; 1415
- 19 Schuetz RD, Houff WH. J Am Chem Soc 1955; 77: 1839
- 20 Dreiding AS, Pratt RJ. J Am Chem Soc 1953; 75: 3717
- 21 Rice LE, Boston MC, Finklea HO, Suder BJ, Frazier JO, Hudlicky T. J Org Chem 1984; 49: 1845
- 22 Hudlicky T, Natchus MG, Kwart LD, Colwell BL. J Org Chem 1985; 50: 4300
- 23 Robinson CY, Brouillette WJ, Muccio DD. J Org Chem 1989; 54: 1992
- 24 Yanagisawa A, Habaue S, Yasue K, Yamamoto H. J Am Chem Soc 1994; 116: 6130
- 25 Orsini F, Pelizzoni F, Pulici M, Vallarino LM. J Org Chem 1994; 59: 1
- 26 Maruoka K, Hashimoto S, Kitagawa Y, Yamamoto H, Nozaki H. J Am Chem Soc 1977; 99: 7705
- 27 Matsubara S, Tsuboniwa N, Morizawa Y, Oshima K, Nozaki H. Bull Chem Soc Jpn 1984; 57: 3242
- 28 Babu SA, Yasuda M, Baba A. J Org Chem 2007; 72: 10264
- 29 Johnson PR, White JDC. J Org Chem 1984; 49: 4424
- 30 Parra M, Mestres R, Aparicio D, Durana N, Rubiales G. J Chem Soc Perkin Trans 1989; 1: 327
- 31 Irie Y, Chen H, Fuse H, Mitsunuma H, Kanai M. Adv Synth Catal 2022; 364: 3378
- 32 Pinosa E, Gualandi A, Fermi A, Ceroni P, Cozzi PG, Calogero F. Eur J Org Chem 2023; 26: e202300421
- 33 O’Brien CJ, Lavigne F, Coyle EE, Holohan AJ, Doonan BJ. Chem Eur J 2013; 19: 5854
- 34 Manwar RR, Balamurugan R. Chem Eur J 2024; 30: e202401905
- 35 Lipshutz BH, Ghorai S, Bošković ŽV. Tetrahedron 2008; 64: 6949
- 36 Abarbri M, Parrain JP, Duchêne A. Synth Commun 1998; 28: 239
- 37 Naskar D, Roy S. Tetrahedron 2000; 56: 1369
- 38 Yoshida C, Higashi T, Hachiro Y. et al. Bioorg Med Chem Lett 2021; 37: 127837
- 39 Shen L, Yang Y, Lu L. et al. Chem Commun 2025; 61: 669
- 40 Wimmer L, Schönbauer D, Pakfeifer P. et al. Org Biomol Chem 2015; 13: 990
- 41 Smith CM, O’Doherty GA. Org Lett 2003; 5: 1959
- 42 Derosa G, Maffioli P, Sahebkar A. In: Anti-Inflammatory Nutraceuticals and Chronic Diseases. Gupta SC, Prasad S, Aggarwal BB. eds. Springer International Publishing; 2016: 173-184
- 43 Stang M, Hanada EM, Blum SA. J Org Chem 2025; 90: 939
- 44 Chandrasekhar S, Venkat Reddy M, Srinivasa Reddy K, Ramarao C. Tetrahedron Lett 2000; 41: 2667
- 45 Bauer A, Nam J-H, Maulide N. Synlett 2019; 30: 413
- 46 Djerassi C. Chem Rev 1948; 43: 271
- 47 Armarego WLF, Perrin DD. Purification of Laboratory Chemicals. 8th ed.; 2017
- 48 Uniqsis Accessible flow chemistry, Flow Syn – Flow Chemistry Made Simple; 2025 https://www.uniqsis.com/ (accessed May 3, 2025)
- 49 Mutorwa MK, Lobb KA, Klein R, Blatch GL, Kaye PT. J Mol Struct 2022; 1256: 132453
- 50 Denmark SE, Matesich ZD, Nguyen ST, Milicevic Sephton S. J Org Chem 2018; 83: 23
- 51 Ramachandran PV, Nicponski D, Kim B. Org Lett 2013; 15: 1398
- 52 Becerra-Figueroa L, Tiniakos AF, Prunet J, Gamba-Sánchez D. Eur J Org Chem 2018; 2018: 6929
- 53 Huang Y, Liao Y. J Org Chem 1991; 56: 1381
- 54 Smith CM, O’Doherty GA. Org Lett 2003; 5: 1959
- 55 Lee SH, Kim DI, Kim JA, Jahng Y. Heterocycl Commun 2005; 11: 407
- 56 Manwar RR, Balamurugan R. Chem Eur J 2024; 30: e202401905
- 57 Abarbri M, Parrain J-L, Duchêne A. Synth Commun 1998; 28: 239
- 58 Zare M, Sarkati MN. Appl Organomet Chem 2023; 37: e7093
- 59 Teja C, Kolb S, Colonna P. et al. Angew Chem Int Ed 2024; 63: e202410162