Synlett 2008(18): 2769-2772  
DOI: 10.1055/s-0028-1083541
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Oxidation of Primary Amines to Ketones

Deborah A. Knowlesa, Christopher J. Mathewsb, Nicholas C. O. Tomkinson*a
a School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
Fax: +44(2920)874030; e-Mail: tomkinsonnc@cardiff.ac.uk;
b Chemistry Department, Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
Further Information

Publication History

Received 2 June 2008
Publication Date:
15 October 2008 (online)

Abstract

A simple method for the oxidation of primary amines to the corresponding ketones that proceeds in the presence of both moisture and air is described. Treatment of an amine with benzoyl peroxide in the presence of caesium carbonate, followed by warming of the hydroxylamine product to 50-70 ˚C leads directly to the ketone. The method is shown to be effective for both benzylic and aliphatic substrates.

    References and Notes

  • 1 Modern Carbonyl Chemistry   Otera J. Wiley-VCH; Weinheim: 2000. 
  • 2 Nakagawa K. Onoue H. Sugita J. Chem. Pharm. Bull.  1964,  12:  1135 
  • 3 Orito K. Hatakeyama T. Takeo M. Uchiito S. Tokuda M. Suginome H. Tetrahedron  1998,  54:  8403 
  • 4 Stephens FF. Bower JD. J. Chem. Soc.  1949,  2971 
  • 5a Rawalay SS. Shechter H. J. Org. Chem.  1967,  32:  3129 
  • 5b Noureldin NA. Bellegarde JW. Synthesis  1999,  939 
  • 6 Audette RJ. Quail JW. Smith PJ. Tetrahedron Lett.  1971,  279 
  • 7 Chen HG. Knochel P. Tetrahedron Lett.  1988,  29:  6701 
  • 8 Miyazawa A. Tanaka K. Sakakura T. Tashiro M. Tashiro H. Prakash GKS. Olah GA. Chem. Commun.  2005,  2104 
  • 9 Hamamoto H. Suzuki Y. Takahashi H. Ikegami S. Tetrahedron Lett.  2007,  48:  4239 
  • 10 Choi H. Doyle MP. Chem. Commun.  2007,  745 
  • 11 Murahashi S.-I. Komiya N. In Modern Oxidation Methods   Backvall J.-E. Wiley-VCH; Weinheim: 2004.  p.175-179  
  • 12 Larsen J. Jørgensen KA. J. Chem. Soc., Perkin Trans. 2  1992,  1213 
  • 13 Moriarty RM. Vaid RK. Duncan MP. Tetrahedron Lett.  1988,  29:  6913 
  • 14 Nicolaou KC. Mathison CJN. Montagnon T. J. Am. Chem. Soc.  2004,  126:  5192 
  • 15 Hoffman RV. J. Am. Chem. Soc.  1976,  98:  6702 
  • 16 Corey EJ. Achiwa K. J. Am. Chem. Soc.  1969,  91:  1429 
  • For the α-oxyacylation of carbonyl compounds, see:
  • 17a Beshara CS. Hall A. Jenkins RL. Jones KL. Jones TC. Killeen NM. Taylor PH. Thomas SP. Tomkinson NCO. Org. Lett.  2005,  7:  5729 
  • 17b Beshara CS. Hall A. Jenkins RL. Jones TC. Parry RT. Thomas SP. Tomkinson NCO. Chem. Commun.  2005,  1478 
  • 17c Jones TC. Tomkinson NCO. Org. Synth.  2007,  233 
  • 18 For the formation of carbamates, see: Hall A. Huguet EP. Jones KL. Jones TC. Killeen NM. Yau SC. Tomkinson NCO. Synlett  2007,  293 
  • 19 For the formation of carbonates, see: Hall A. Jones KL. Jones TC. Killeen NM. Porzig R. Taylor PH. Yau SC. Tomkinson NCO. Synlett  2006,  3435 
  • 20 For the α-oxysulfonylation of carbonyl compounds, see: John ORS. Killeen NM. Knowles DA. Yau SC. Tomkinson NCO. Org. Lett.  2007,  9:  4009 
  • 21 For the N-arylation of hydroxylamines, see: Jones KL. Porzelle A. Hall A. Woodrow MD. Tomkinson NCO. Org. Lett.  2008,  10:  797 
  • 22 Wang QX. King J. Phanstiel OIV. J. Org. Chem.  1997,  62:  8104 
  • 24 Roy RB. Swan GA. J. Chem. Soc. C  1968,  80 
  • 25 Alewood PF. Calder IC. Richardson RL. Synthesis  1981,  121 
  • 26 Berman AM. Johnson JS. J. Am. Chem. Soc.  2004,  126:  5680 
23

All the known ketones prepared in this study were characterised by ¹H NMR, ¹³C NMR, IR and LRMS.

27

Typical Procedure for Conversion of N -Alkyl- O -benzoyl Hydroxylamines to Ketones: N-α-Methyl benzyl-O-benzoyl hydroxylamine (100 mg, 0.41 mmol) was dissolved in DMF (0.59 mL) at ambient temperature. Caesium carbonate (135 mg, 0.41 mmol) was added and the resulting reaction mixture was heated at 50 ˚C overnight. The resulting reaction mixture was allowed to cool and purified directly by column chromatography, eluting with 20% EtOAc-PE, to give acetophenone (42 mg, 84%) as a clear colourless oil. IR (thin film): 1683, 1599, 1582, 1449, 1359, 1266, 1180, 1078, 1025, 955, 760, 690 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 2 H), 7.45 (t, J = 7.3 Hz, 1 H), 7.40-7.30 (m, 2 H), 2.50 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 198.1, 137.1, 133.1, 128.6, 128.3, 26.6. MS (EI): m/z = 120.06 [M]+.
Typical Procedure for the One-Pot Conversion of Primary Amines to Ketones: Benzoyl peroxide (326 mg, 1.01 mmol, 75%) was dissolved in DMF (2.53 mL) and cooled to 0 ˚C. Caesium carbonate (493 mg, 1.51 mmol) was added with stirring followed by cyclohexyl ethylamine (0.18 mL, 1.21 mmol). The resulting reaction mixture was stirred at 0 ˚C for 2 h before warming to r.t. TLC was used to confirm complete consumption of benzoyl peroxide before heating at 50 ˚C overnight. The resulting reaction mixture was purified directly by column chromatography, eluting with 20% EtOAc-PE, to give cyclohexyl methyl ketone
(75 mg, 59%) as a clear colourless oil. IR (thin film): 2931, 2854, 1706 cm. ¹H NMR (400 MHz, CDCl3): δ = 2.3-2.1 (m, 1 H), 2.05 (s, 3 H), 1.80-1.85 (m, 2 H), 1.70-1.75 (m,
2 H), 1.55-1.65 (m, 1 H), 1.05-1.30 (m, 5 H). ¹³C NMR (100 MHz, CDCl3): δ = 212.2, 51.4, 28.4, 27.8, 25.8, 25.6. MS (EI): m/z = 126.22 [M]+.