Synlett 2010(1): 1-22  
DOI: 10.1055/s-0029-1218542
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

The Design of Chiral Double Hydrogen Bonding Networks and Their Applications to Catalytic Asymmetric Carbon-Carbon and Carbon-Oxygen Bond-Forming Reactions

Yoshihiro Sohtome, Kazuo Nagasawa*
Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887295; e-Mail: [email protected];
Further Information

Publication History

Received 19 May 2009
Publication Date:
09 December 2009 (online)

Abstract

This review focuses on the applications of multicenter organocatalysts, which can form chiral hydrogen bonded networks. The high tunabilities of these catalysts in terms of their active sites, chiral spacers, and tolerated reaction conditions have been used advantageously in applications to various classes of catalytic asymmetric carbon-carbon and carbon-oxygen bond forming reactions. The high stereoselectivities of these reactions are attributed to the chemoselective dual activation of both the nucleophile and electrophile reacting partners in asymmetric space. The key requirements for the cooperative effects of weak noncovalent-bonding interactions are discussed.

1 Introduction

2 General Concept for the Design of Chiral Hydrogen Bonding Networks

3 Bis-thiourea-type Homo-bifunctional Organocatalysts

3.1 Enantioselective Morita-Baylis-Hillman Reaction

4 Guanidinium-Thiourea Hetero-multifunctional Organocatalysts

4.1 Catalytic Diastereo- and Enantioselective Nitroaldol Reaction of Prochiral Aldehydes

4.2 Catalytic Diastereoselective Nitroaldol Reaction of
α-Chiral Aldehydes

4.3 Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters

4.4 Catalytic Asymmetric Nitro-Mannich-type Reaction

4.5 Catalytic Asymmetric Mannich-type Reaction with Malonates

5 Guanidinium-Urea Hetero-multifunctional Organocatalysts

5.1 Catalytic Asymmetric Epoxidation with Hydrogen Per­oxide

6 Summary

    References

  • 1a Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions   Academic; San Diego / CA: 2002. 
  • 1b Duagas H. Bioorganic Chemistry   Springer; New York: 1999. 
  • For reviews, see:
  • 2a Shibasaki M. Matsunaga S. Kumagai N. Synlett  2008,  1583 
  • 2b Shibasaki M. Kanai M. Org. Biomol. Chem.  2007,  5:  2027 
  • 2c Shibasaki M. Kanai M. Matsunaga S. Aldrichimica Acta  2006,  39:  31 
  • 2d Shibasaki M. Matsunaga S. Chem. Soc. Rev.  2006,  35:  269 
  • 2e Kanai M. Kato N. Ichikawa E. Shibasaki M. Synlett  2005,  1491 
  • 2f Shibasaki M. Yoshikawa N. Chem. Rev.  2002,  102:  2187 
  • 2g Shibasaki M. Sasai H. Arai T. Angew. Chem. Int. Ed. Engl.  1997,  36:  1236 
  • 3a Lewis Acids in Organic Synthesis   Vols. 1 and 2:  Yamamoto H. Wiley; New York: 2000. 
  • 3b Comprehensive Asymmetric Catalysis   Vols. 1-3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 4a Jeffrey G. Saenger W. Hydrogen Bonding in Biological Structures   Springer; Berlin: 1991. 
  • 4b Desiraju GR. Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology   Oxford University Press; Oxford: 1999. 
  • 4c Williams DH. Westwell MS. Chem. Soc. Rev.  1998,  27:  57 
  • For selected general reviews on asymmetric organocatalysis, see:
  • 5a Berkessel A. Gröger H. Asymmetric Organocatalysis   Wiley-VCH; Weinheim: 2005. 
  • 5b Enantioselective Organocatalysis: Reaction and Experimental Procedures   Dalko PI. Wiley and Sons; New York: 2007. 
  • 5c Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2001,  40:  3726 
  • 5d Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 5e MacMillan DWC. Nature (London)  2008,  455:  304 
  • For selected reviews on asymmetric catalysis by hydrogen bond donors, see:
  • 6a Doyle AG. Jacobsen EN. Chem. Rev.  2007,  107:  5713 
  • 6b Takemoto Y. Miyabe H. Chimia  2007,  61:  269 
  • 6c Connon SJ. Chem. Eur. J.  2006,  12:  5418 
  • 6d Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 6e Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal.  2006,  348:  999 
  • 6f Takemoto Y. Org. Biomol. Chem.  2005,  3:  4299 
  • 6g Schreiner PR. Chem. Soc. Rev.  2003,  32:  289 
  • For pioneering work using chiral urea/thiourea catalysts by Jacobsen’s group, see:
  • 7a Sigman MS. Jacobsen EN.
    J. Am. Chem. Soc.  1998,  120:  4901 
  • For a recent mechanistic study, see:
  • 7b Zuend SJ. Jacobsen EN.
    J. Am. Chem. Soc.  2007,  129:  15872 
  • For counterion catalysis by Jacobsen’s group, see:
  • 7c Raheem I. Thiara PS. Peterson EA. Jacobsen EN. J. Am. Chem. Soc.  2007,  129:  13404 
  • 7d Reisman SE. Doyle AG. Jacobsen EN. J. Am. Chem. Soc.  2008,  130:  7198 
  • For other works by Jacobsen’s group:
  • 7e

    See also ref. 6; and references cited therein

  • For Takemoto’s original work, see:
  • 8a Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc.  2003,  125:  12672 
  • For other works by Takemoto’s group, see:
  • 8b Miyabe M. Takemoto Y. Bull. Chem. Soc. Jpn.  2008,  81:  785 
  • 8c

    See also ref. 6

  • For reviews on chiral guanidine catalysts, see:
  • 10a Ishikawa T. Isobe T. Chem. Eur. J.  2002,  8:  552 
  • 10b Ishikawa T. Kumamoto T. Synthesis  2006,  737 
  • 10c Leow D. Tan C.-H. Chem. Asian J.  2009,  4:  488 
  • For our work, see:
  • 11a Nagasawa K. Georgieva A. Takahashi H. Nakata T. Tetrahedron  2000,  56:  187 
  • 11b Nagasawa K. G eorgieva A. Takahashi H. Nakata T. Tetrahedron  2001,  57:  8959 
  • 11c Kita T. Georgieva A. Hashimoto Y. Nakata T. Nagasawa K. Angew. Chem. Int. Ed.  2002,  41:  2832 
  • 11d Kita T. Shin B. Hashimoto Y. Nagasawa K. Heterocycles  2007,  73:  241 
  • For representative examples, see:
  • 13a Schuster T. Bauch M. Dürner D. Göbel MW. Org. Lett.  2000,  2:  179 
  • 13b Schuster T. Kurz M. Göbel MW. J. Org. Chem.  2000,  65:  1697 
  • 14 Yoon TP. Jacobsen EN. Science (Washington, DC)  2003,  299:  1691 
  • 15a Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Tetrahedron Lett.  2004,  45:  5589 
  • 15b Sohtome Y. Takemura N. Takagi R. Hashimoto Y. Nagasawa K. Tetrahedron  2008,  64:  9423 
  • 15c Sohtome Y. Hashimoto Y. Nagasawa K. Adv. Synth. Catal.  2005,  347:  1643 
  • 15d Sohtome Y. Takemura N. Iguchi T. Hashimoto Y. Nagasawa K. Synlett  2006,  144 
  • 15e Sohtome Y. Hashimoto Y. Nagasawa K. Eur. J. Org. Chem.  2006,  2894 
  • 15f Sohtome Y. Takemura N. Takada K. Takagi R. Iguchi T. Nagasawa K. Chem. Asian J.  2007,  2:  1150 
  • 15g Takada K. Takemura N. Cho K. Sohtome Y. Nagasawa K. Tetrahedron Lett.  2008,  49:  1623 
  • 15h Shin B. Tanaka S. Kita T. Hashimoto Y. Nagasawa K. Heterocycles  2008,  76:  801 
  • 15i Takada K. Nagasawa K. Adv. Synth. Catal.  2009,  351:  345 
  • 15j Takada K. Tanaka S. Nagasawa K. Synlett  2009,  1643 
  • 15k Tanaka S. Nagasawa K. Synlett  2009,  667 
  • 16a Nagasawa K. Georgieva A. Koshino H. Nakata T. Kita T. Hashimoto Y. Org. Lett.  2002,  4:  177 
  • 16b Ishiwata T. Hino T. Koshino H. Hashimoto Y. Nakata T. Nagasawa K. Org. Lett.  2002,  4:  2921 
  • 16c Nagasawa K. Hashimoto Y. Chem. Rec.  2003,  3:  201 
  • 16d Shimokawa J. Shirai K. Tanatani A. Hashimoto Y. Nagasawa K. Angew. Chem. Int. Ed.  2004,  43:  1559 
  • 16e Shimokawa J. Ishiwata T. Shirai K. Koshino H. Tanatani A. Nakata T. Hashimoto Y. Nagasawa K. Chem. Eur. J.  2005,  11:  6878 
  • 16f Nagasawa K. Shimokawa J. J. Synth. Org. Chem. Jpn.  2006,  64:  539 
  • 16g Iwamoto O. Koshino H. Hashizume D. Nagasawa K. Angew. Chem. Int. Ed.  2007,  46:  8625 
  • 16h Iwamoto O. Shinohara R. Nagasawa K. Chem. Asian J.  2009,  4:  277 
  • 17 Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Chem. Pharm. Bull.  2004,  52:  477 
  • Curran apparently was the first to use urea derivatives for general acid-promoted reactions, see:
  • 18a Curran DP. Kuo LH. J. Org. Chem.  1994,  59:  3259 
  • 18b Curran DP. Kuo LH. Tetrahedron Lett.  1995,  36:  6647 
  • 18c Wilcox CS. Kim E. Romano D. Kuo LH. Burt AL. Curran DP. Tetrahedron  1995,  51:  621 
  • 19 Hedstrom L. Chem. Rev.  2002,  102:  4501 
  • 20a Morita K. Suzuki Z. Hirose H. Bull. Chem. Soc. Jpn.  1968,  41:  2815 
  • 20b Baylis AB, and Hillman MED. inventors; DE  2155113.  1972; Chem. Abstr. 1972, 77, 34174q
  • For general reviews, see:
  • 21a Masson G. Housseman C. Zhu J. Angew. Chem. Int. Ed.  2007,  46:  4614 
  • 21b Basavaiah D. Rao KV. Reddy RJ. Chem. Soc. Rev.  2007,  36:  1581 
  • 21c Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 21d Iwabuchi Y. Hatakeyama S. J. Synth. Org. Chem., Jpn.  2002,  60:  2 
  • 21e Langer P. Angew. Chem. Int. Ed.  2000,  39:  3049 
  • 21f Ciganek E. In Organic Reactions   Vol. 51:  Paquette LA. Wiley; New York: 1977.  p.201 
  • For pioneering work on asymmetric MBH reactions by Hatakeyama’s group, see:
  • 22a Iwabuchi Y. Nakatani M. Yokoyama N. Hatakeyama S. J. Am. Chem. Soc.  1999,  121:  10219 
  • 22b Iwabuchi Y. Furukawa M. Esumi T. Hatakeyama S. Chem. Commun. (Cambridge)  2001,  2030 
  • 22c Iwabuchi Y. Sugihara T. Esumi T. Hatakeyama S. Tetrahedron Lett.  2001,  42:  7867 
  • 22d Nakano A. Takahashi K. Ishihara J. Hatakeyama S. Org. Lett.  2006,  8:  5357 
  • For representative chiral Lewis base catalysts, see:
  • 23a Oishi T. Oguri H. Hirama M. Tetrahedron: Asymmetry  1995,  6:  1241 
  • 23b Marko IE. Giles PR. Hindley NJ. Tetrahedron  1997,  53:  1015 
  • 23c Barrett AGM. Cook AS. Kamimura A. Chem. Commun.  1998,  2533 
  • 23d Imbriglio JE. Vasbinder MM. Miller SJ. Org. Lett.  2003,  5:  3741 
  • 23e Vasbinder MM. Imbriglio JE. Miller SJ. Tetrahedron  2006,  62:  11450 
  • 23f Aroyan CE. Vasbinder MM. Miller SJ. Org. Lett.  2005,  7:  3849 
  • 23g Tang H. Zhao G. Zhou Z. Zhou Q. Tang C. Tetrahedron Lett.  2006,  47:  5717 
  • 23h Xu J. Guan Y. Yang S. Ng Y. Peh G. Tan C.-H. Chem. Asian J.  2006,  1:  724 
  • For other chiral Lewis base catalysts
  • 23i

    See also ref. 20; and references cited therein

  • For chiral Brønsted acid and achiral Lewis base systems, see:
  • 24a Yamada YMA. Ikegami S. Tetrahedron Lett.  2000,  41:  2165 
  • 24b McDougal NT. Schaus SE. J. Am. Chem. Soc.  2003,  125:  12094 
  • 24c McDougal NT. Trevellini WL. Rodgen SA. Kliman LT. Schaus SE. Adv. Synth. Catal.  2004,  346:  1231 
  • 24d Rodgen SA. Schaus SE. Angew. Chem. Int. Ed.  2006,  45:  4929 
  • 24e

    See also ref. 15a

  • 24f

    See also ref. 15b. Recently improved bis-thiourea catalysts were reported by Berkessel and Shi’s groups, see:

  • 24g Berkessel A. Roland K. Neudöfl JM. Org. Lett.  2006,  8:  4195 
  • 24h Shi M. Liu X.-G. Org. Lett.  2008,  10:  1043 
  • 25 For a review of solvent-free approaches, see: Walsh PJ. Li H. de Parrodi CA. Chem. Rev.  2007,  107:  2503 
  • 26a Schreiner PR. Wittkopp A. Org. Lett.  2002,  4:  217 
  • 26b Wittkopp A. Schreiner PR. Chem. Eur. J.  2003,  9:  407 
  • These results are not entirely novel; Connon and Maher also reported very similar results with the use of methyl acrylate and methyl vinyl ketone at almost the same time as our report, see:
  • 27a Maher DJ. Connon SJ. Tetrahedron Lett.  2004,  45:  1301 
  • For other works by Connon’s group:
  • 27b

    See also ref. 6, including their review

  • 27c Connon SJ. Synlett  2009,  354 
  • 28 Jones CES. Turega SM. Clarke ML. Philp D. Tetrahedron Lett.  2008,  49:  4666 
  • For mechanistic studies on the MBH reaction, see:
  • 29a Raheem IT. Jacobsen EN. Adv. Synth. Catal.  2005,  347:  1701 
  • 29b Aggawal VK. Fulford SY. Lloyd-Jones GC. Angew. Chem. Int. Ed.  2005,  44:  1706 
  • 29c Price KE. Broadwater SJ. Jung HM. McQuade DT. Org. Lett.  2005,  7:  147 
  • 29d Price KE. Broadwater SJ. Walker BJ. McQuade DT. J. Org. Chem.  2005,  70:  3980 
  • 29e Buskens P. Klankermayer J. Leitner W. J. Am. Chem. Soc.  2005,  127:  16762 
  • 30 Henry LCR. Hebd. Seances Acad. Sci.  1895,  120:  1265 
  • 31a Palomo C. Oiarbide M. Laso A. Eur. J. Org. Chem.  2007,  2561 
  • 31b Boruwa J. Gogoi N. Saikia PP. Barua NC. Tetrahedron: Asymmetry  2006,  17:  3315 
  • 31c Palomo C. Oiarbide M. Mielgo A. Angew. Chem. Int. Ed.  2004,  43:  5442 
  • 31d Ono N. The Nitro Group in Organic Synthesis   Wiley-VCH; New York: 2001. 
  • For syn-selective nitroaldol reactions, see:
  • 32a Sasai H. Tokunaga T. Watanabe S. Suzuki T. Itoh N. Shibasaki M. J. Org. Chem.  1995,  60:  7388 
  • 32b Arai T. Watanabe M. Yanagisawa A. Org. Lett.  2007,  9:  3595 
  • 32c Arai T. Takashita R. Endo Y. Watanabe M. Yanagisawa A. J. Org. Chem.  2008,  73:  4903 
  • 32d Toussaint A. Pfaltz A. Eur. J. Org. Chem.  2008,  4591 
  • For anti-selective nitroaldol reactions, see:
  • 32e Uraguchi D. Sakaki S. Ooi T. J. Am. Chem. Soc.  2007,  129:  12392 
  • 32f Nitabaru T. Kumagai N. Shibasaki M. Tetrahedron Lett.  2008,  49:  272 
  • 32g Handa S. Nagawa K. Sohtome Y. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2008,  47:  3230 
  • For the first report of an enantioselective nitroaldol reaction with nitromethane, see:
  • 33a Sasai H. Suzuki T. Arai S. Arai T. Shibasaki M. J. Am. Chem. Soc.  1992,  114:  4418 
  • For other works:
  • 33b

    See also ref. 31a; and references cited therein

  • 33c

    See also ref. 31b; and references cited therein

  • 33d

    See also ref. 31c; and references cited therein

  • 34a Tosaki S. Hara K. Gnanadesikan V. Morimoto H. Harada S. Sugita M. Yamagiwa N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  11776 
  • 34b Hara K. Tosaki S. Gnanadesikan V. Morimoto H. Harada S. Sugita M. Yamagiwa N. Matsunaga S. Shibasaki M. Tetrahedron  2009,  65:  5030 
  • For reviews on asymmetric phase-transfer catalysts, see:
  • 35a Maruoka K. Ooi T. Chem. Rev.  2003,  103:  3013 
  • 35b O’Donnell MJ. Acc. Chem. Res.  2004,  37:  506 
  • 35c Lygo B. Andrews BI. Acc. Chem. Res.  2004,  37:  518 
  • 35d Hashimoto T. Maruoka K. Chem. Rev.  2007,  107:  5656 
  • 35e Maruoka K. Asymmetric Phase Transfer Catalysis   Wiley-VCH; Weinheim: 2008. 
  • 36a Ohshima T. Shibuguchi T. Fukuta Y. Shibasaki M. Tetrahedron  2004,  60:  7743 
  • 36b Chinchilla R. Mazon P. Nájera C. Ortega FJ. Tetrahedron: Asymmetry  2004,  15:  2603 
  • 37 Klussmann M. Iwamura H. Mathew SP. Wells DH. Pandya U. Armstrong A. Blackmond DG. Nature (London)  2006,  441:  621 
  • For a discussion about long alkyl chain effects on quaternary ammonium, see:
  • 38a Kitamura M. Shirakawa S. Maruoka K. Angew. Chem. Int. Ed.  2005,  44:  1549 
  • For combined proline-surfactant organocatalysts, see:
  • 38b Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  734 
  • 38c Hayashi Y. Aratake S. Okano T. Takahashi J. Sumiya T. Shoji M. Angew. Chem. Int. Ed.  2006,  45:  5527 
  • For approaches to asymmetric reactions using an excess of chiral surfactant, see:
  • 38d Dasgupta A. Mitra RN. Roy S. Das PK. Chem. Asian J.  2006,  1:  780 ; and references cited therein
  • For a discussion about surfactant effects on secondary amine catalyzed aldol reactions:
  • 39a

    See ref. 38b. See also:

  • 39b Cordova A. Notz W. Barbas CF. Chem. Commun. (Cambridge)  2002,  3024 
  • 39c Peng Y.-Y. Ding Q.-P. Li Z. Wang PG. Cheng J.-P. Tetrahedron Lett.  2003,  44:  3871 
  • 40 Girard C. Kagan HB. Angew. Chem. Int. Ed.  1998,  37:  2922 
  • For the isolation and structural determination of compound 16b, see:
  • 42a Kakeya H. Morishita M. Kobinata K. Osono M. Ishizuka M. Osada H. J. Antibiot.  1998,  51:  1126 
  • 42b Kakeya H. Morishita M. Koshino H. Morita T. Kobayashi K. Osada H. J. Org. Chem.  1999,  64:  1052 
  • For a review on the stereoselective synthesis of compounds 16a and 16b, see:
  • 42c Grajewska A. Rozwadowska MD. Tetrahedron: Asymmetry  2007,  18:  803 ; and references cited therein
  • For catalytic diastereoselective nitroaldol reactions of chiral aldehydes with nitromethane:
  • 43a

    See ref. 15d. See also:

  • 43b Sasai H. Kim W.-S. Suzuki T. Shibasaki M. Mistuda M. Hasegawa J. Ohashi T. Tetrahedron Lett.  1994,  35:  6123 
  • 43c Corey EJ. Zhang F.-Y. Angew. Chem. Int. Ed.  1999,  38:  1931 
  • For catalytic doubly diastereoselective nitroaldol reactions of chiral aldehydes with prochiral nitroalkanes, see:
  • 43d Sohtome Y. Kato Y. Handa S. Aoyama N. Nagawa K. Matsunaga S. Shibasaki M. Org. Lett.  2008,  10:  2231 ; and references cited therein
  • 44 Reetz MT. Chem. Rev.  1999,  99:  1121 
  • For general reviews on the stereoselective construction of quaternary stereocenters, see:
  • 45a Christofees J. Baro A. Adv. Synth. Catal.  2005,  347:  1473 
  • 45b Quaternary Stereocenters - Challenges and Solutions for Organic Synthesis   Christofees J. Baro A. Wiley-VCH; Weinheim: 2005. 
  • 45c Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5363 
  • For enantioselective nitroaldol reactions of α-keto esters, see:
  • 46a Christensen C. Juhl K. Jørgensen KA. Chem. Commun. (Cambridge)  2001,  2222 
  • 46b Christensen C. Juhl K. Jørgensen KA. J. Org. Chem.  2002,  67:  4875 
  • 46c Lu S.-F. Du D.-M. Zhang SW. Xu J. Tetrahedron: Asymmetry  2004,  15:  3433 
  • 46d Du D.-M. Lu S.-F. Fang T. Xu J. J. Org. Chem.  2005,  70:  3712 
  • 46e Qin B. Xiao X. Liu X. Huang J. Wen Y. Feng X. J. Org. Chem.  2007,  72:  10302 
  • 46f Choudary BM. Ranganath KVS. Pal U. Kantam ML. Sreedhar B. J. Am. Chem. Soc.  2005,  127:  13167 
  • 46g Li H. Wang B. Deng L. J. Am. Chem. Soc.  2006,  128:  732 
  • For enantioselective nitroaldol reactions of α-ketophosphonates, see:
  • 46h Mandal T. Samanta S. Zhao C.-G. Org. Lett.  2007,  9:  943 
  • For enantioselective nitroaldol reactions of trifluoromethyl ketones, see:
  • 46i Tur F. Saá JM. Org. Lett.  2007,  9:  5079 
  • For catalytic kinetic resolution approaches to construct chiral tertiary nitroaldol reaction products from simple ketones:
  • 46j

    See also ref. 34.

  • 48 For original work concerning ‘on water’ acceleration, see: Narayan S. Muldoon J. Finn MG. Fokin VV. Kolb HC. Sharpless KB. Angew. Chem. Int. Ed.  2005,  44:  3275 
  • For general reviews on catalytic asymmetric Mannich-type reactions, see:
  • 49a Ting A. Schaus SE. Eur. J. Org. Chem.  2007,  5797 
  • 49b Verkade JM. van Hemert JC. Quaedflieg PLM. Rutjes FJT. Chem. Soc. Rev.  2007,  37:  29 
  • For reviews on catalytic asymmetric nitro-Mannich-type reactions, see:
  • 50a Westermann B. Angew. Chem. Int. Ed.  2003,  42:  151 
  • 50b Marqués-Lopéz E. Merino P. Tejero T. Herrera RP. Eur. J. Org. Chem.  2009,  2401 
  • For pioneering work on anti-selective catalytic asymmetric nitro-Mannich-type reactions, see:
  • 51a Yamada K.-I. Moll G. Shibasaki M. Synlett  2001,  980 
  • For other works:
  • 51b

    See also ref. 50; and references cited therein

  • 52 For pioneering work on syn-selective catalytic asymmetric nitro-Mannich-type reactions, see: Handa S. Gnanadesikan V. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  4900 
  • 53a Petrini M. Chem. Rev.  2005,  105:  3949 
  • 53b Petrini M. Torregiani E. Synthesis  2007,  159 
  • For general reviews on catalytic asymmetric epoxidations, see:
  • 54a Modern Oxidation Methods   Bäckvall J.-E. Wiley-VCH; Weinheim: 2004. 
  • 54b Xia Q.-H. Ge H.-Q. Ye C.-P. Liu Z.-M. Su K.-X. Chem. Rev.  2005,  105:  1603 
  • 55 Campos-Martin JM. Blanco-Brieva G. Fierro JLG. Angew. Chem. Int. Ed.  2006,  45:  6962 ; and references cited therein
  • 56a Juliá S. Masana J. Vega JC. Angew. Chem. Int. Ed. Engl.  1980,  19:  929 
  • 56b Juliá S. Guixer J. Masana J. Rocas J. Colonna S. Annuziata R. Molinari H. J. Chem. Soc., Perkin Trans. 1  1982,  1317 
  • For representative organocatalytic epoxidations with hydrogen peroxide, see:
  • 57a Arai S. Tsuge H. Shioiri T. Tetrahedron Lett.  1998,  39:  7563 
  • 57b Arai S. Tsuge H. Oku M. Miura M. Shioiri T. Tetrahedron  2002,  58:  1623 
  • 57c Dehmlow EV. Düttmann S. Neumann B. Stammler H.-G. Eur. J. Org. Chem.  2002,  2087 
  • 57d Berkessel A. Gasch N. Glaubiz K. Koch C. Org. Lett.  2001,  3:  3839 
  • 57e Kelly DR. Roberts SM. Biopolymers  2006,  84:  74 
  • 57f Berkessel A. Koch B. Toniolo C. Rainaldi M. Broxterman QB. Kaptein B. Biopolymers  2006,  84:  90 
  • 57g Geller T. Gerlach A. Krüger CM. Militzer H.-C. Tetrahedron Lett.  2004,  45:  5065 
  • 57h Geller T. Krüger CM. Militzer H.-C. Tetrahedron Lett.  2004,  45:  5069 
  • 57i Yi H. Zou G. Li Q. Chen Q. Tang J. He M.-y. Tetrahedron Lett.  2005,  46:  5665 
  • 57j Hori K. Tamura M. Tani K. Nishiwaki N. Ariga M. Tohda Y. Tetrahedron Lett.  2006,  47:  3115 
  • 57k Sundén H. Ibrahem I. Córdova A. Tetrahedron Lett.  2006,  47:  99 
  • 57l Zhao G.-L. Ibrahem I. Sundén H. Córdova A. Adv. Synth. Catal.  2006,  349:  1210 
  • 57m Marigo M. Franzén J. Poulsen TB. Zhuang W. Jørgensen KA. J. Am. Chem. Soc.  2005,  127:  6964 
  • 57n Jew S.-s. Lee JH. Jeong B.-S. Yoo M.-S. Kim M.-J. Lee J. Choi S.-h. Lee K. Lah MS. Park H.-g. Angew. Chem. Int. Ed.  2005,  44:  1383 
  • 57o Peris G. Jakobsche CE. Miller SJ. J. Am. Chem. Soc.  2007,  129:  8710 
  • 57p Wang X. Reisinger CM. List B. J. Am. Chem. Soc.  2008,  130:  6070 
  • 57q

    See also ref. 15k

  • 57r Terada M. Nakano M. Heterocycles  2008,  76:  1049 
  • 58a McManus JC. Carey JS. Taylor RJK. Synlett  2003,  365 
  • 58b McManus JC. Genski T. Carey JS. Taylor RJK. Synlett  2003,  369 
  • 58c Kumamoto T. Ebine K. Endo M. Araki Y. Fushimi Y. Miyamoto I. Ishikawa T. Isobe T. Fukuda K. Heterocycles  2005,  66:  347 
  • 58d Allingham MT. Howard-Jones A. Murphy PJ. Thomas DA. Caulkett PWR. Tetrahedron Lett.  2003,  44:  8677 
  • 58e

    See also ref. 57r

9

For other chiral urea and thiourea catalysts, see ref. 6 and references cited therein.

12

For other chiral guanidine and guanidinium catalysts, see ref. 10 and references cited therein.

41

In the absence of KOH, the reaction did not proceed at all. In addition, no reaction occurred after pretreatment of catalyst 2a with an excess of KOH (10 equiv to 2a). In this catalytic system, KOH might deprotonate the nitroalkane.

47

Deng’s group reported an example of a cinchona alkaloid catalyzed nitroaldol reaction of α-keto esters with nitroethane; see ref. 46g.