Synthesis 2010(9): 1512-1520  
DOI: 10.1055/s-0029-1218671
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Optically Pure Lactone Metabolites of Tea Catechins

Masahiro Hamada, Ai Furuno, Sousuke Nakano, Takao Kishimoto, Noriyuki Nakajima*
Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
Fax: +81(766)562498; e-Mail: nori@pu-toyama.ac.jp;
Further Information

Publication History

Received 11 December 2009
Publication Date:
05 February 2010 (online)

Abstract

Catechins and epicatechins are extremely useful compounds in the context of biological activities. These compounds afford many metabolites, including γ-valerolactone derivatives, through metabolic pathways in the human body. Several of these γ-valerolactone metabolites were synthesized as optically pure authentic standards.

    References

  • 1 Ariga T. Koshiyama I. Fukushima D. Agric. Biol. Chem.  1988,  52:  2717 
  • 2 Fukai T. Ishigami T. Hara Y. Agric. Biol. Chem.  1991,  55:  1895 
  • 3 Nakayama M. Suzuki K. Toda M. Okubo S. Hara Y. Shimamura T. Antiviral Res.  1993,  21:  289 
  • 4 Xu Y. Ho C.-T. Amin SG. Chung F.-L. Cancer Res.  1992,  52:  3875 
  • 5 Yang CS. Landau JM. Huang M.-T. Newmark HL. Annu. Rev. Nutr.  2001,  21:  381 
  • 6 Mizushina Y. Saito A. Tanaka A. Nakajima N. Kuriyama I. Takemura M. Takeuchi T. Sugawara F. Yoshida H. Biochem. Biophys. Res. Commun.  2005,  333:  101 
  • 7a Ohshima Y. Watanabe H. Isakari S. J. Biochem.  1958,  45:  861 
  • 7b Ohshima Y. Watanabe H. J. Biochem.  1958,  45:  973 
  • 7c Ohshima Y. Watanabe H. Kuwazuka S. Bull. Agric. Chem. Soc. Jpn.  1960,  24:  497 
  • 8a Meselhy MR. Nakamura N. Hattori M. Chem. Pharm. Bull.  1997,  45:  888 
  • 8b Wang L.-Q. Meselhy MR. Li Y. Nakamura N. Min B.-S. Qin G.-W. Hattori M. Chem. Pharm. Bull.  2001,  49:  1640 
  • 9a Li C. Lee M.-J. Sheng S. Meng X. Prabhu S. Winnik B. Huang B. Chung JY. Yan S. Ho C.-T. Yang CS. Chem. Res. Toxicol.  2000,  13:  177 
  • 9b Li C. Meng X. Winnik B. Lee M.-J. Lu H. Sheng S. Buckly B. Yang CS. Chem. Res. Toxicol.  2001,  14:  702 
  • 9c Meng X. Sang S. Zhu N. Lu H. Sheng S. Lee M.-J. Ho C.-T. Yang CS. Chem. Res. Toxicol.  2002,  15:  1042 
  • 10 Duweler KG. Rohdewald P. Pharmazie  2000,  55:  364 
  • 11a Kohri T. Matsumoto N. Yamakawa M. Suzuki M. Nanjo F. Hara Y. Oku N. J. Agric. Food Chem.  2001,  49:  4102 
  • 11b Kohri T. Suzuki M. Nanjyo F. J. Agric. Food Chem.  2003,  51:  5561 
  • 12 Lee M.-J. Maliakal P. Chen L. Meng X. Bondoc FY. Prabhu S. Lambert G. Mohr S. Yang CS. Cancer Epidemiol., Biomarkers Prev.  2002,  11:  1025 
  • 13 Takizwa Y. Morota T. Tajeda S. Aburada M. Biol. Pharm. Bull.  2003,  26:  608 
  • 14 Grimm T. Schäfer A. Högger P. Free Radical Biol. Med.  2004,  36:  811 
  • 15 Lubet RA. Yang CS. Lee M.-J. Hara Y. Kepetanovic IM. Crowell JA. Steele VE. Juliana MM. Grubbs CJ. Mol. Cancer Ther.  2007,  6:  2022 
  • 16 Yuan J.-M. Gao Y.-T. Yang CS. Yu MC. Int. J. Cancer  2007,  120:  1344 
  • 17 Tzounis X. Vulevic J. Kuhnle GGC. George T. Leonczak J. Gibson GR. Kwik-Uribe C. Spencer JPE. Br. J. Nutr.  2008,  99:  782 
  • 18 Watanabe H. Bull. Agric. Chem. Soc. Japan  1959,  23:  263 
  • 19 Lambert JD. Rice JE. Hong J. Hou Z. Yang CS. Bioorg. Med. Chem. Lett.  2005,  15:  873 
  • 20 Nakano S. Hamada M. Kishimoto T. Nakajima N. Heterocycles  2008,  76:  1001 
21

(S)-5b was prepared from (R)-7 by a similar procedure to that used to prepare (R)-5b.

22

The ¹³C NMR chemical shifts for the C3, C4 and C5 atoms are observed at δ = 27.23, δ = 79.52, and δ = 41.21, respectively, for (R,S)-14 and at δ = 27.36, δ = 79.66, and δ = 41.31, respectively, for (S,S)-14.